J. Ziehn, M. Roschani, M. Ruf, D. Bruestle, J. Beyerer, Melanie Helmer
{"title":"利用可见光成像车对车通信","authors":"J. Ziehn, M. Roschani, M. Ruf, D. Bruestle, J. Beyerer, Melanie Helmer","doi":"10.1515/aot-2020-0038","DOIUrl":null,"url":null,"abstract":"Abstract With advances in automated and connected driving, secure communication is increasingly becoming a safety-critical function. Injection of manipulated radio messages into traffic can cause severe accidents in the foreseeable future, and can currently be achieved without having to manipulate on-board vehicle systems directly, for example by hijacking cellphones instead and using these as senders. Thereby, large-scale attacks on vehicles can be executed remotely, and target relatively vulnerable devices. To mitigate remaining vulnerabilities in current automotive security architectures, this paper proposes a secondary communication channel using vehicle head and taillights. In contrast to existing approaches, this method allows both to achieve a sufficient data rate and to extract the angular position of the sender, by means of an imaging process which only requires close-to-market, cost-efficient technology. Through this, injecting false messages by masquerading as a different sender is considerably more challenging: The receiver can verify a message’s source position with the supposed position of the sender, e.g. by using on-board sensors or communicated information. Thereby, reliably faking both the communicated messages and the position of the sender will require direct manipulation of on-board vehicle systems, raising the security level of the function accordingly, and precluding low-threshold, wide-range attacks.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"58 1","pages":"339 - 348"},"PeriodicalIF":2.3000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0038","citationCount":"5","resultStr":"{\"title\":\"Imaging vehicle-to-vehicle communication using visible light\",\"authors\":\"J. Ziehn, M. Roschani, M. Ruf, D. Bruestle, J. Beyerer, Melanie Helmer\",\"doi\":\"10.1515/aot-2020-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With advances in automated and connected driving, secure communication is increasingly becoming a safety-critical function. Injection of manipulated radio messages into traffic can cause severe accidents in the foreseeable future, and can currently be achieved without having to manipulate on-board vehicle systems directly, for example by hijacking cellphones instead and using these as senders. Thereby, large-scale attacks on vehicles can be executed remotely, and target relatively vulnerable devices. To mitigate remaining vulnerabilities in current automotive security architectures, this paper proposes a secondary communication channel using vehicle head and taillights. In contrast to existing approaches, this method allows both to achieve a sufficient data rate and to extract the angular position of the sender, by means of an imaging process which only requires close-to-market, cost-efficient technology. Through this, injecting false messages by masquerading as a different sender is considerably more challenging: The receiver can verify a message’s source position with the supposed position of the sender, e.g. by using on-board sensors or communicated information. Thereby, reliably faking both the communicated messages and the position of the sender will require direct manipulation of on-board vehicle systems, raising the security level of the function accordingly, and precluding low-threshold, wide-range attacks.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":\"58 1\",\"pages\":\"339 - 348\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/aot-2020-0038\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2020-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2020-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Imaging vehicle-to-vehicle communication using visible light
Abstract With advances in automated and connected driving, secure communication is increasingly becoming a safety-critical function. Injection of manipulated radio messages into traffic can cause severe accidents in the foreseeable future, and can currently be achieved without having to manipulate on-board vehicle systems directly, for example by hijacking cellphones instead and using these as senders. Thereby, large-scale attacks on vehicles can be executed remotely, and target relatively vulnerable devices. To mitigate remaining vulnerabilities in current automotive security architectures, this paper proposes a secondary communication channel using vehicle head and taillights. In contrast to existing approaches, this method allows both to achieve a sufficient data rate and to extract the angular position of the sender, by means of an imaging process which only requires close-to-market, cost-efficient technology. Through this, injecting false messages by masquerading as a different sender is considerably more challenging: The receiver can verify a message’s source position with the supposed position of the sender, e.g. by using on-board sensors or communicated information. Thereby, reliably faking both the communicated messages and the position of the sender will require direct manipulation of on-board vehicle systems, raising the security level of the function accordingly, and precluding low-threshold, wide-range attacks.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.