{"title":"一般四边形结构网格上浅水方程的质量保守TR-BDF2半隐式半拉格朗日DG离散化","authors":"G. Tumolo","doi":"10.1515/caim-2016-0026","DOIUrl":null,"url":null,"abstract":"Abstract As an extension of a previous work considering a fully advective formulation on Cartesian meshes, a mass conservative discretization approach is presented here for the shallow water equations, based on discontinuous finite elements on general structured meshes of quadrilaterals. A semi-implicit time integration is performed by employing the TR-BDF2 scheme and is combined with the semi-Lagrangian technique for the momentum equation only. Indeed, in order to simplify the derivation of the discrete linear Helmoltz equation to be solved at each time-step, a non-conservative formulation of the momentum equation is employed. The Eulerian flux form is considered instead for the continuity equation in order to ensure mass conservation. Numerical results show that on distorted meshes and for relatively high polynomial degrees, the proposed numerical method fully conserves mass and presents a higher level of accuracy than a standard off-centered Crank Nicolson approach. This is achieved without any significant imprinting of the mesh distortion on the solution.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"7 1","pages":"165 - 190"},"PeriodicalIF":0.3000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/caim-2016-0026","citationCount":"4","resultStr":"{\"title\":\"A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals\",\"authors\":\"G. Tumolo\",\"doi\":\"10.1515/caim-2016-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As an extension of a previous work considering a fully advective formulation on Cartesian meshes, a mass conservative discretization approach is presented here for the shallow water equations, based on discontinuous finite elements on general structured meshes of quadrilaterals. A semi-implicit time integration is performed by employing the TR-BDF2 scheme and is combined with the semi-Lagrangian technique for the momentum equation only. Indeed, in order to simplify the derivation of the discrete linear Helmoltz equation to be solved at each time-step, a non-conservative formulation of the momentum equation is employed. The Eulerian flux form is considered instead for the continuity equation in order to ensure mass conservation. Numerical results show that on distorted meshes and for relatively high polynomial degrees, the proposed numerical method fully conserves mass and presents a higher level of accuracy than a standard off-centered Crank Nicolson approach. This is achieved without any significant imprinting of the mesh distortion on the solution.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"7 1\",\"pages\":\"165 - 190\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/caim-2016-0026\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2016-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2016-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals
Abstract As an extension of a previous work considering a fully advective formulation on Cartesian meshes, a mass conservative discretization approach is presented here for the shallow water equations, based on discontinuous finite elements on general structured meshes of quadrilaterals. A semi-implicit time integration is performed by employing the TR-BDF2 scheme and is combined with the semi-Lagrangian technique for the momentum equation only. Indeed, in order to simplify the derivation of the discrete linear Helmoltz equation to be solved at each time-step, a non-conservative formulation of the momentum equation is employed. The Eulerian flux form is considered instead for the continuity equation in order to ensure mass conservation. Numerical results show that on distorted meshes and for relatively high polynomial degrees, the proposed numerical method fully conserves mass and presents a higher level of accuracy than a standard off-centered Crank Nicolson approach. This is achieved without any significant imprinting of the mesh distortion on the solution.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.