透明细胞肾细胞癌中 Krüppel-Like Factor 3 (KLF3) 的分子表达及其预后意义

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Eukaryotic Gene Expression Pub Date : 2024-01-01 DOI:10.1615/CritRevEukaryotGeneExpr.2023049010
Bin Wan, Wensheng Zhang, Xinxi Deng, Yigang Lu, Zhuo Zhang, Yang Yang
{"title":"透明细胞肾细胞癌中 Krüppel-Like Factor 3 (KLF3) 的分子表达及其预后意义","authors":"Bin Wan, Wensheng Zhang, Xinxi Deng, Yigang Lu, Zhuo Zhang, Yang Yang","doi":"10.1615/CritRevEukaryotGeneExpr.2023049010","DOIUrl":null,"url":null,"abstract":"<p><p>A major subtype of renal cancer is clear cell renal cell carcinoma (ccRCC). Krüppel-like factor 3 (KLF3) dysfunction is also revealed leading to poor prognosis in multiple cancer types. However, dysregulation and molecular dynamics of KLF3 underlying ccRCC progression still remains elusive. Here KLF3 gene and protein expressions in ccRCC were explored using data cohorts from The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort. Correlations of KLF3 expression with clinicopathological features, epigenetic modification, and immune microenvironment characteristics were further investigated. KLF3 was significantly down-regulated expressed in ccRCC tissues compared to adjacent normal controls. Adverse pathological parameters and poor prognosis were associated with lower expression of KLF3. Mechanically, KLF3 regulation was mainly attributed to CpG island methylation. KLF3-high expression subgroup was significantly enriched in cell signaling pathways most associated with EMT markers, angiogenesis, inflammatory response, apoptosis, TGF-β, degradation of ECM, G2M checkpoint, and PI3K-AKT-mTOR. Based on GDSC database, KLF3 upregulation was identified to be associated with higher sensitivities towards PI3K-Akt-mTOR pathway inhibitors such as PI-103, PIK-93, and OSI-027. In addition, patients with down-regulated KLF3 expressions were found more sensitive towards Trametinib, Cetuximab, and Erlotinib. Collectively, our findings suggest that KLF3 may act as a suitable biomarker for prognosis prediction, tumor microenvironment (TME) phenotype identification, thereby helping ccRCC patients to make better therapeutic decisions.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Expression and Prognostic Implications of Krüppel-Like Factor 3 (KLF3) in Clear Cell Renal Cell Carcinoma.\",\"authors\":\"Bin Wan, Wensheng Zhang, Xinxi Deng, Yigang Lu, Zhuo Zhang, Yang Yang\",\"doi\":\"10.1615/CritRevEukaryotGeneExpr.2023049010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major subtype of renal cancer is clear cell renal cell carcinoma (ccRCC). Krüppel-like factor 3 (KLF3) dysfunction is also revealed leading to poor prognosis in multiple cancer types. However, dysregulation and molecular dynamics of KLF3 underlying ccRCC progression still remains elusive. Here KLF3 gene and protein expressions in ccRCC were explored using data cohorts from The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort. Correlations of KLF3 expression with clinicopathological features, epigenetic modification, and immune microenvironment characteristics were further investigated. KLF3 was significantly down-regulated expressed in ccRCC tissues compared to adjacent normal controls. Adverse pathological parameters and poor prognosis were associated with lower expression of KLF3. Mechanically, KLF3 regulation was mainly attributed to CpG island methylation. KLF3-high expression subgroup was significantly enriched in cell signaling pathways most associated with EMT markers, angiogenesis, inflammatory response, apoptosis, TGF-β, degradation of ECM, G2M checkpoint, and PI3K-AKT-mTOR. Based on GDSC database, KLF3 upregulation was identified to be associated with higher sensitivities towards PI3K-Akt-mTOR pathway inhibitors such as PI-103, PIK-93, and OSI-027. In addition, patients with down-regulated KLF3 expressions were found more sensitive towards Trametinib, Cetuximab, and Erlotinib. Collectively, our findings suggest that KLF3 may act as a suitable biomarker for prognosis prediction, tumor microenvironment (TME) phenotype identification, thereby helping ccRCC patients to make better therapeutic decisions.</p>\",\"PeriodicalId\":56317,\"journal\":{\"name\":\"Critical Reviews in Eukaryotic Gene Expression\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Eukaryotic Gene Expression\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023049010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023049010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肾癌的一个主要亚型是透明细胞肾细胞癌(ccRCC)。Krüppel样因子3(KLF3)功能障碍也被揭示会导致多种癌症类型的不良预后。然而,ccRCC进展背后的KLF3调控失调和分子动力学仍未确定。本文利用癌症基因组图谱(TCGA)、人类蛋白质图谱(HPA)和临床肿瘤蛋白质组学分析联盟(CPTAC)的数据队列探讨了ccRCC中KLF3基因和蛋白质的表达,并在我们的患者队列中进行了验证。我们还进一步研究了KLF3表达与临床病理特征、表观遗传修饰和免疫微环境特征的相关性。与邻近的正常对照组相比,KLF3在ccRCC组织中的表达明显下调。不良病理参数和不良预后与KLF3的低表达有关。从机制上看,KLF3的调控主要归因于CpG岛甲基化。KLF3高表达亚组明显富集于与EMT标志物、血管生成、炎症反应、细胞凋亡、TGF-β、ECM降解、G2M检查点和PI3K-AKT-mTOR最相关的细胞信号通路中。基于 GDSC 数据库,KLF3 上调被认为与对 PI3K-Akt-mTOR通路抑制剂(如 PI-103、PIK-93 和 OSI-027)更敏感有关。此外,KLF3表达下调的患者对曲美替尼、西妥昔单抗和厄洛替尼更敏感。总之,我们的研究结果表明,KLF3可作为一种合适的生物标记物用于预后预测、肿瘤微环境(TME)表型识别,从而帮助ccRCC患者做出更好的治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Expression and Prognostic Implications of Krüppel-Like Factor 3 (KLF3) in Clear Cell Renal Cell Carcinoma.

A major subtype of renal cancer is clear cell renal cell carcinoma (ccRCC). Krüppel-like factor 3 (KLF3) dysfunction is also revealed leading to poor prognosis in multiple cancer types. However, dysregulation and molecular dynamics of KLF3 underlying ccRCC progression still remains elusive. Here KLF3 gene and protein expressions in ccRCC were explored using data cohorts from The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort. Correlations of KLF3 expression with clinicopathological features, epigenetic modification, and immune microenvironment characteristics were further investigated. KLF3 was significantly down-regulated expressed in ccRCC tissues compared to adjacent normal controls. Adverse pathological parameters and poor prognosis were associated with lower expression of KLF3. Mechanically, KLF3 regulation was mainly attributed to CpG island methylation. KLF3-high expression subgroup was significantly enriched in cell signaling pathways most associated with EMT markers, angiogenesis, inflammatory response, apoptosis, TGF-β, degradation of ECM, G2M checkpoint, and PI3K-AKT-mTOR. Based on GDSC database, KLF3 upregulation was identified to be associated with higher sensitivities towards PI3K-Akt-mTOR pathway inhibitors such as PI-103, PIK-93, and OSI-027. In addition, patients with down-regulated KLF3 expressions were found more sensitive towards Trametinib, Cetuximab, and Erlotinib. Collectively, our findings suggest that KLF3 may act as a suitable biomarker for prognosis prediction, tumor microenvironment (TME) phenotype identification, thereby helping ccRCC patients to make better therapeutic decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Eukaryotic Gene Expression
Critical Reviews in Eukaryotic Gene Expression 生物-生物工程与应用微生物
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
1 months
期刊介绍: Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource. Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.
期刊最新文献
Exosomal circ_001860 promotes colorectal cancer progression through miR-582-5p/ZEB1 axis Glycosaminoglycans (GAGs) adenogenesis factors: immunohistochemical espression in endometriosis tissues compared to the endometrium Curcumin-carbon dots suppress periodontitis via regulating METTL3/IRE1α signaling DNMT1-dependent DNA methylation of lncRNA FTX inhibits the ferroptosis of hepatocellular carcinoma A Review: The bioactivities and mechanisms of fungus extracts and compounds in colon cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1