基于移动水平估计的qLPV非线性模型预测控制

M. Morato, Emanuel Bernardi, V. Stojanovic
{"title":"基于移动水平估计的qLPV非线性模型预测控制","authors":"M. Morato, Emanuel Bernardi, V. Stojanovic","doi":"10.20517/ces.2021.09","DOIUrl":null,"url":null,"abstract":"This paper presents a Model Predictive Control (MPC) algorithm for Nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) embeddings. Input-to-state stability is ensured through parameter-dependent terminal ingredients, computed offline via Linear Matrix Inequalities. The online operation comprises three consecutive Quadratic Programs (QPs) and, thus, is computationally efficient and able to run in real-time for a variety of applications. These QPs stand for the control optimization (MPC) and a Moving-Horizon Estimation (MHE) scheme that predicts the behaviour of the scheduling parameters along the future horizon. The method is practical and simple to implement. Its effectiveness is assessed through a benchmark example (a CSTR system).","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A qLPV Nonlinear Model Predictive Control with Moving Horizon Estimation\",\"authors\":\"M. Morato, Emanuel Bernardi, V. Stojanovic\",\"doi\":\"10.20517/ces.2021.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Model Predictive Control (MPC) algorithm for Nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) embeddings. Input-to-state stability is ensured through parameter-dependent terminal ingredients, computed offline via Linear Matrix Inequalities. The online operation comprises three consecutive Quadratic Programs (QPs) and, thus, is computationally efficient and able to run in real-time for a variety of applications. These QPs stand for the control optimization (MPC) and a Moving-Horizon Estimation (MHE) scheme that predicts the behaviour of the scheduling parameters along the future horizon. The method is practical and simple to implement. Its effectiveness is assessed through a benchmark example (a CSTR system).\",\"PeriodicalId\":72652,\"journal\":{\"name\":\"Complex engineering systems (Alhambra, Calif.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex engineering systems (Alhambra, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2021.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2021.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对拟线性变参数嵌入表示的非线性系统,提出了一种模型预测控制算法。输入到状态的稳定性通过参数相关的终端成分来保证,通过线性矩阵不等式离线计算。在线操作包括三个连续的二次程序(qp),因此,计算效率高,能够实时运行各种应用程序。这些qp代表控制优化(MPC)和移动视界估计(MHE)方案,该方案预测调度参数沿未来视界的行为。该方法实用易行。通过一个基准示例(CSTR系统)来评估其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A qLPV Nonlinear Model Predictive Control with Moving Horizon Estimation
This paper presents a Model Predictive Control (MPC) algorithm for Nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) embeddings. Input-to-state stability is ensured through parameter-dependent terminal ingredients, computed offline via Linear Matrix Inequalities. The online operation comprises three consecutive Quadratic Programs (QPs) and, thus, is computationally efficient and able to run in real-time for a variety of applications. These QPs stand for the control optimization (MPC) and a Moving-Horizon Estimation (MHE) scheme that predicts the behaviour of the scheduling parameters along the future horizon. The method is practical and simple to implement. Its effectiveness is assessed through a benchmark example (a CSTR system).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Event-triggered model predictive tracking control of aero-engine with varying prediction horizon AWF-YOLO: enhanced underwater object detection with adaptive weighted feature pyramid network Model predictive control of multi-objective adaptive cruise system based on extension theory Event-triggered state estimation for complex networks under deception attacks: a partial-nodes-based approach Rolling bearing fault diagnosis method based on 2D grayscale images and Wasserstein Generative Adversarial Nets under unbalanced sample condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1