{"title":"时变时滞高非线性切换随机系统的稳定性分析","authors":"Jing Sun, Haibo Wang","doi":"10.20517/ces.2022.48","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the stability of highly nonlinear switched stochastic systems (SSSs) with time-varying delays, where the switching time instants are deterministic rather than stochastic. Herein, the boundedness of the global solution is first proven for highly nonlinear SSSs via the average dwell time (ADT) method and multiple Lyapunov function (MLF) approach. Then, the stability criteria for qth moment exponential stability and almost surely exponential stability are presented. The main difficulty lies in the presence of switching and time-varying delay terms, which prevents the validation of existing methods. New inequality techniques have been developed to counteract the effects of switching signals and time-varying delays. Finally, an example is provided to verify the effectiveness of the results.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability analysis for highly nonlinear switched stochastic systems with time-varying delays\",\"authors\":\"Jing Sun, Haibo Wang\",\"doi\":\"10.20517/ces.2022.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the stability of highly nonlinear switched stochastic systems (SSSs) with time-varying delays, where the switching time instants are deterministic rather than stochastic. Herein, the boundedness of the global solution is first proven for highly nonlinear SSSs via the average dwell time (ADT) method and multiple Lyapunov function (MLF) approach. Then, the stability criteria for qth moment exponential stability and almost surely exponential stability are presented. The main difficulty lies in the presence of switching and time-varying delay terms, which prevents the validation of existing methods. New inequality techniques have been developed to counteract the effects of switching signals and time-varying delays. Finally, an example is provided to verify the effectiveness of the results.\",\"PeriodicalId\":72652,\"journal\":{\"name\":\"Complex engineering systems (Alhambra, Calif.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex engineering systems (Alhambra, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2022.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2022.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability analysis for highly nonlinear switched stochastic systems with time-varying delays
In this paper, we examine the stability of highly nonlinear switched stochastic systems (SSSs) with time-varying delays, where the switching time instants are deterministic rather than stochastic. Herein, the boundedness of the global solution is first proven for highly nonlinear SSSs via the average dwell time (ADT) method and multiple Lyapunov function (MLF) approach. Then, the stability criteria for qth moment exponential stability and almost surely exponential stability are presented. The main difficulty lies in the presence of switching and time-varying delay terms, which prevents the validation of existing methods. New inequality techniques have been developed to counteract the effects of switching signals and time-varying delays. Finally, an example is provided to verify the effectiveness of the results.