{"title":"基于智能评价的互联弹簧-质量-阻尼系统分散跟踪控制设计","authors":"Wenqian Fan, Aohua Liu, Ding Wang","doi":"10.20517/ces.2023.04","DOIUrl":null,"url":null,"abstract":"In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized tracking control design based on intelligent critic for an interconnected spring-mass-damper system\",\"authors\":\"Wenqian Fan, Aohua Liu, Ding Wang\",\"doi\":\"10.20517/ces.2023.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.\",\"PeriodicalId\":72652,\"journal\":{\"name\":\"Complex engineering systems (Alhambra, Calif.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex engineering systems (Alhambra, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2023.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2023.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decentralized tracking control design based on intelligent critic for an interconnected spring-mass-damper system
In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.