{"title":"基于自适应滑模的通信约束下多智能体系统安全共识控制","authors":"Mengzhao Ding, Bei Chen","doi":"10.20517/ces.2023.06","DOIUrl":null,"url":null,"abstract":"The consensus tracking problem is investigated for a class of multi-agent systems (MASs) under communication constraints. In particular, as a result of the impact of amplitude attenuation and random interference, communication among followers may inevitably suffer from the fading phenomenon. Meanwhile, the controllers may also be subject to malicious deception attacks, which will disrupt the correct operation of the MASs. Thus, the agents can only update their states based on fading information exchanged with their neighbors and the false control input under attacks. The consensus tracking error variables are first designed via the fading signal received from neighbors. Then, an online estimation strategy is introduced to estimate the unknown attacks, based on which the adaptive sliding mode controller is designed to attenuate the effect of the time-varying attacks on MASs. Convergence analysis of the MASs under the designed control strategy is provided by using the Lyapunov stability theory and adaptive sliding mode control method. Finally, the effectiveness of the theoretical results is verified via numerical simulations.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure consensus control for multi-agent systems under communication constraints via adaptive sliding mode technique\",\"authors\":\"Mengzhao Ding, Bei Chen\",\"doi\":\"10.20517/ces.2023.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consensus tracking problem is investigated for a class of multi-agent systems (MASs) under communication constraints. In particular, as a result of the impact of amplitude attenuation and random interference, communication among followers may inevitably suffer from the fading phenomenon. Meanwhile, the controllers may also be subject to malicious deception attacks, which will disrupt the correct operation of the MASs. Thus, the agents can only update their states based on fading information exchanged with their neighbors and the false control input under attacks. The consensus tracking error variables are first designed via the fading signal received from neighbors. Then, an online estimation strategy is introduced to estimate the unknown attacks, based on which the adaptive sliding mode controller is designed to attenuate the effect of the time-varying attacks on MASs. Convergence analysis of the MASs under the designed control strategy is provided by using the Lyapunov stability theory and adaptive sliding mode control method. Finally, the effectiveness of the theoretical results is verified via numerical simulations.\",\"PeriodicalId\":72652,\"journal\":{\"name\":\"Complex engineering systems (Alhambra, Calif.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex engineering systems (Alhambra, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2023.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2023.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure consensus control for multi-agent systems under communication constraints via adaptive sliding mode technique
The consensus tracking problem is investigated for a class of multi-agent systems (MASs) under communication constraints. In particular, as a result of the impact of amplitude attenuation and random interference, communication among followers may inevitably suffer from the fading phenomenon. Meanwhile, the controllers may also be subject to malicious deception attacks, which will disrupt the correct operation of the MASs. Thus, the agents can only update their states based on fading information exchanged with their neighbors and the false control input under attacks. The consensus tracking error variables are first designed via the fading signal received from neighbors. Then, an online estimation strategy is introduced to estimate the unknown attacks, based on which the adaptive sliding mode controller is designed to attenuate the effect of the time-varying attacks on MASs. Convergence analysis of the MASs under the designed control strategy is provided by using the Lyapunov stability theory and adaptive sliding mode control method. Finally, the effectiveness of the theoretical results is verified via numerical simulations.