{"title":"用成像技术研究封闭式模型桩压入过程引起的土体位移","authors":"Ye Lu, Yun Jiang, Xiaoyong Wang","doi":"10.18690/10.18690/ACTAGEOTECHSLOV.17.2.2-15.2020","DOIUrl":null,"url":null,"abstract":"In recent years, installing piles using the press-in method has gained popularity in urban areas. However, pushing piles into the ground squeezes the surrounding soils and consequently causes a disturbance or even damage to the underground structures and facilities close by. In order to investigate the squeezing effect incurred by press-in piling, a series of model tests were performed. The soil displacement field was captured using a non-contact technique called digital image correlation (DIC), and the horizontal soil stresses were measured by mini pressure cells. Analyses of the soil displacement fields showed that the pile press-in process caused different soil displacement paths at different depths and locations. The development of horizontal soil stresses correlated well with the horizontal and vertical displacements. A thin disturbance layer could be observed along the pile-soil interface and it was about 7.4-11.1 D50 in thickness (D50, median particle size). At the end, the soil displacements caused by pushing the model pile with different pile shoes were analyzed and compared, and the analyses showed that a greater shoe angle resulted in greater disturbance to the surrounding soils. However, the influence of the pile shoe angle became less substantial with the increase of the pile penetration depth.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":"17 1","pages":"2-15"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of soil displacements caused by the press-in process for close-ended model piles using an imaging technique\",\"authors\":\"Ye Lu, Yun Jiang, Xiaoyong Wang\",\"doi\":\"10.18690/10.18690/ACTAGEOTECHSLOV.17.2.2-15.2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, installing piles using the press-in method has gained popularity in urban areas. However, pushing piles into the ground squeezes the surrounding soils and consequently causes a disturbance or even damage to the underground structures and facilities close by. In order to investigate the squeezing effect incurred by press-in piling, a series of model tests were performed. The soil displacement field was captured using a non-contact technique called digital image correlation (DIC), and the horizontal soil stresses were measured by mini pressure cells. Analyses of the soil displacement fields showed that the pile press-in process caused different soil displacement paths at different depths and locations. The development of horizontal soil stresses correlated well with the horizontal and vertical displacements. A thin disturbance layer could be observed along the pile-soil interface and it was about 7.4-11.1 D50 in thickness (D50, median particle size). At the end, the soil displacements caused by pushing the model pile with different pile shoes were analyzed and compared, and the analyses showed that a greater shoe angle resulted in greater disturbance to the surrounding soils. However, the influence of the pile shoe angle became less substantial with the increase of the pile penetration depth.\",\"PeriodicalId\":50897,\"journal\":{\"name\":\"Acta Geotechnica Slovenica\",\"volume\":\"17 1\",\"pages\":\"2-15\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica Slovenica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18690/10.18690/ACTAGEOTECHSLOV.17.2.2-15.2020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/10.18690/ACTAGEOTECHSLOV.17.2.2-15.2020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigation of soil displacements caused by the press-in process for close-ended model piles using an imaging technique
In recent years, installing piles using the press-in method has gained popularity in urban areas. However, pushing piles into the ground squeezes the surrounding soils and consequently causes a disturbance or even damage to the underground structures and facilities close by. In order to investigate the squeezing effect incurred by press-in piling, a series of model tests were performed. The soil displacement field was captured using a non-contact technique called digital image correlation (DIC), and the horizontal soil stresses were measured by mini pressure cells. Analyses of the soil displacement fields showed that the pile press-in process caused different soil displacement paths at different depths and locations. The development of horizontal soil stresses correlated well with the horizontal and vertical displacements. A thin disturbance layer could be observed along the pile-soil interface and it was about 7.4-11.1 D50 in thickness (D50, median particle size). At the end, the soil displacements caused by pushing the model pile with different pile shoes were analyzed and compared, and the analyses showed that a greater shoe angle resulted in greater disturbance to the surrounding soils. However, the influence of the pile shoe angle became less substantial with the increase of the pile penetration depth.
期刊介绍:
ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering.
ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing.
The journal is published twice a year.