{"title":"松散硅砂中群桩侧移特性小比例尺模型试验","authors":"A. Vakili, S. Zomorodian, A. Totonchi","doi":"10.18690/actageotechslov.18.1.41-54.2021","DOIUrl":null,"url":null,"abstract":"The accurate predictions of load- deflection response of the pile group are necessary for a safe and economical design. The behavior of piles under the lateral load embedded in soil, is typically analyzed using the Winkler nonlinear springs method. In this method, the soil-pile interaction is modeled by nonlinear p-y curves in a way that the single pile p-y curve is modified using a p-multiplier (Pm) for each row of piles in the group. The average Pm is called the group reduction factor. The Pm factor depends upon the configuration of pile group and the pile spacing (S). The present study was conducted to investigate the effects of various parameters, such as the pile spacing in the group, different layouts and the lateral load angle (Ѳ) change as a new parameter on the Pm factor and group efficiency based on the 1-g model test. The Pm factor is well comparable with the results of the full-scale test on pile group. However, based on the results, the calculated values of the Pm factor for 3×3 pile groups under 2.5-diameter spacing was estimated about 0.38 and under 3.5-diameter spacing was estimated about 0.52, so the calculated values at S/D=3, obtained from interpolation the values of group reduction factor at S/D=2.5 and S/D=3.5, are close to the AASHTO recommendation.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small scale model test on lateral behaviors of pile group in loose silica sand\",\"authors\":\"A. Vakili, S. Zomorodian, A. Totonchi\",\"doi\":\"10.18690/actageotechslov.18.1.41-54.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate predictions of load- deflection response of the pile group are necessary for a safe and economical design. The behavior of piles under the lateral load embedded in soil, is typically analyzed using the Winkler nonlinear springs method. In this method, the soil-pile interaction is modeled by nonlinear p-y curves in a way that the single pile p-y curve is modified using a p-multiplier (Pm) for each row of piles in the group. The average Pm is called the group reduction factor. The Pm factor depends upon the configuration of pile group and the pile spacing (S). The present study was conducted to investigate the effects of various parameters, such as the pile spacing in the group, different layouts and the lateral load angle (Ѳ) change as a new parameter on the Pm factor and group efficiency based on the 1-g model test. The Pm factor is well comparable with the results of the full-scale test on pile group. However, based on the results, the calculated values of the Pm factor for 3×3 pile groups under 2.5-diameter spacing was estimated about 0.38 and under 3.5-diameter spacing was estimated about 0.52, so the calculated values at S/D=3, obtained from interpolation the values of group reduction factor at S/D=2.5 and S/D=3.5, are close to the AASHTO recommendation.\",\"PeriodicalId\":50897,\"journal\":{\"name\":\"Acta Geotechnica Slovenica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica Slovenica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18690/actageotechslov.18.1.41-54.2021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/actageotechslov.18.1.41-54.2021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Small scale model test on lateral behaviors of pile group in loose silica sand
The accurate predictions of load- deflection response of the pile group are necessary for a safe and economical design. The behavior of piles under the lateral load embedded in soil, is typically analyzed using the Winkler nonlinear springs method. In this method, the soil-pile interaction is modeled by nonlinear p-y curves in a way that the single pile p-y curve is modified using a p-multiplier (Pm) for each row of piles in the group. The average Pm is called the group reduction factor. The Pm factor depends upon the configuration of pile group and the pile spacing (S). The present study was conducted to investigate the effects of various parameters, such as the pile spacing in the group, different layouts and the lateral load angle (Ѳ) change as a new parameter on the Pm factor and group efficiency based on the 1-g model test. The Pm factor is well comparable with the results of the full-scale test on pile group. However, based on the results, the calculated values of the Pm factor for 3×3 pile groups under 2.5-diameter spacing was estimated about 0.38 and under 3.5-diameter spacing was estimated about 0.52, so the calculated values at S/D=3, obtained from interpolation the values of group reduction factor at S/D=2.5 and S/D=3.5, are close to the AASHTO recommendation.
期刊介绍:
ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering.
ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing.
The journal is published twice a year.