Jiancheng Zhong;Zuohang Qu;Ying Zhong;Chao Tang;Yi Pan
{"title":"利用基因表达数据鉴定必需蛋白质的连续和离散相似系数","authors":"Jiancheng Zhong;Zuohang Qu;Ying Zhong;Chao Tang;Yi Pan","doi":"10.26599/BDMA.2022.9020019","DOIUrl":null,"url":null,"abstract":"Essential proteins play a vital role in biological processes, and the combination of gene expression profiles with Protein-Protein Interaction (PPI) networks can improve the identification of essential proteins. However, gene expression data are prone to significant fluctuations due to noise interference in topological networks. In this work, we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate noise fluctuation. We then proposed the Pearson Jaccard coefficient (PJC) that consisted of continuous and discrete similarities in the gene expression data. Using the graph theory as the basis, we fused the newly proposed similarity coefficient with the existing network topology prediction algorithm at each protein node to recognize essential proteins. This strategy exhibited a high recognition rate and good specificity. We validated the new similarity coefficient PJC on PPI datasets of Krogan, Gavin, and DIP of yeast species and evaluated the results by receiver operating characteristic analysis, jackknife analysis, top analysis, and accuracy analysis. Compared with that of node-based network topology centrality and fusion biological information centrality methods, the new similarity coefficient PJC showed a significantly improved prediction performance for essential proteins in DC, IC, Eigenvector centrality, subgraph centrality, betweenness centrality, closeness centrality, NC, PeC, and WDC. We also compared the PJC coefficient with other methods using the NF-PIN algorithm, which predicts proteins by constructing active PPI networks through dynamic gene expression. The experimental results proved that our newly proposed similarity coefficient PJC has superior advantages in predicting essential proteins.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 2","pages":"185-200"},"PeriodicalIF":7.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026519.pdf","citationCount":"1","resultStr":"{\"title\":\"Continuous and Discrete Similarity Coefficient for Identifying Essential Proteins Using Gene Expression Data\",\"authors\":\"Jiancheng Zhong;Zuohang Qu;Ying Zhong;Chao Tang;Yi Pan\",\"doi\":\"10.26599/BDMA.2022.9020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Essential proteins play a vital role in biological processes, and the combination of gene expression profiles with Protein-Protein Interaction (PPI) networks can improve the identification of essential proteins. However, gene expression data are prone to significant fluctuations due to noise interference in topological networks. In this work, we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate noise fluctuation. We then proposed the Pearson Jaccard coefficient (PJC) that consisted of continuous and discrete similarities in the gene expression data. Using the graph theory as the basis, we fused the newly proposed similarity coefficient with the existing network topology prediction algorithm at each protein node to recognize essential proteins. This strategy exhibited a high recognition rate and good specificity. We validated the new similarity coefficient PJC on PPI datasets of Krogan, Gavin, and DIP of yeast species and evaluated the results by receiver operating characteristic analysis, jackknife analysis, top analysis, and accuracy analysis. Compared with that of node-based network topology centrality and fusion biological information centrality methods, the new similarity coefficient PJC showed a significantly improved prediction performance for essential proteins in DC, IC, Eigenvector centrality, subgraph centrality, betweenness centrality, closeness centrality, NC, PeC, and WDC. We also compared the PJC coefficient with other methods using the NF-PIN algorithm, which predicts proteins by constructing active PPI networks through dynamic gene expression. The experimental results proved that our newly proposed similarity coefficient PJC has superior advantages in predicting essential proteins.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 2\",\"pages\":\"185-200\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10026288/10026519.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10026519/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10026519/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continuous and Discrete Similarity Coefficient for Identifying Essential Proteins Using Gene Expression Data
Essential proteins play a vital role in biological processes, and the combination of gene expression profiles with Protein-Protein Interaction (PPI) networks can improve the identification of essential proteins. However, gene expression data are prone to significant fluctuations due to noise interference in topological networks. In this work, we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate noise fluctuation. We then proposed the Pearson Jaccard coefficient (PJC) that consisted of continuous and discrete similarities in the gene expression data. Using the graph theory as the basis, we fused the newly proposed similarity coefficient with the existing network topology prediction algorithm at each protein node to recognize essential proteins. This strategy exhibited a high recognition rate and good specificity. We validated the new similarity coefficient PJC on PPI datasets of Krogan, Gavin, and DIP of yeast species and evaluated the results by receiver operating characteristic analysis, jackknife analysis, top analysis, and accuracy analysis. Compared with that of node-based network topology centrality and fusion biological information centrality methods, the new similarity coefficient PJC showed a significantly improved prediction performance for essential proteins in DC, IC, Eigenvector centrality, subgraph centrality, betweenness centrality, closeness centrality, NC, PeC, and WDC. We also compared the PJC coefficient with other methods using the NF-PIN algorithm, which predicts proteins by constructing active PPI networks through dynamic gene expression. The experimental results proved that our newly proposed similarity coefficient PJC has superior advantages in predicting essential proteins.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.