{"title":"在无扩散环境下用表面等离子体共振成像监测实时结合动力学","authors":"R. D'Agata, G. Grasso, G. Spoto","doi":"10.2174/1874383800802010001","DOIUrl":null,"url":null,"abstract":"Surface Plasmon Resonance Imaging (SPRI) is an optical technique emerged as a powerful tool for the simul- taneous monitoring of interactions of biomolecules arrayed onto gold substrates. To take fully advantage of the SPRI ap- proach a precise control of the fluidic of the analyte solution is imposed. The diffusion between the flowing buffer and the analyte solution which is established within the fluidic system creates a liquid volume where a gradient in the analyte con- centration is present. Such gradient is shown to affect the kinetics parameters obtained from the SPRI response. We pre- sent results obtained from a new delivery approach based on the use of air bubbles. The advantages offered by the new approach are demonstrated by using two different interacting biomolecular systems: the streptavidin-biotin system and the Ricinus Communis Agglutinin lectin-asialofetuin.","PeriodicalId":88758,"journal":{"name":"The open spectroscopy journal","volume":"2 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Real-Time Binding Kinetics Monitored with Surface Plasmon Resonance Imaging in a Diffusion-Free Environment\",\"authors\":\"R. D'Agata, G. Grasso, G. Spoto\",\"doi\":\"10.2174/1874383800802010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface Plasmon Resonance Imaging (SPRI) is an optical technique emerged as a powerful tool for the simul- taneous monitoring of interactions of biomolecules arrayed onto gold substrates. To take fully advantage of the SPRI ap- proach a precise control of the fluidic of the analyte solution is imposed. The diffusion between the flowing buffer and the analyte solution which is established within the fluidic system creates a liquid volume where a gradient in the analyte con- centration is present. Such gradient is shown to affect the kinetics parameters obtained from the SPRI response. We pre- sent results obtained from a new delivery approach based on the use of air bubbles. The advantages offered by the new approach are demonstrated by using two different interacting biomolecular systems: the streptavidin-biotin system and the Ricinus Communis Agglutinin lectin-asialofetuin.\",\"PeriodicalId\":88758,\"journal\":{\"name\":\"The open spectroscopy journal\",\"volume\":\"2 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open spectroscopy journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874383800802010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open spectroscopy journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874383800802010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Binding Kinetics Monitored with Surface Plasmon Resonance Imaging in a Diffusion-Free Environment
Surface Plasmon Resonance Imaging (SPRI) is an optical technique emerged as a powerful tool for the simul- taneous monitoring of interactions of biomolecules arrayed onto gold substrates. To take fully advantage of the SPRI ap- proach a precise control of the fluidic of the analyte solution is imposed. The diffusion between the flowing buffer and the analyte solution which is established within the fluidic system creates a liquid volume where a gradient in the analyte con- centration is present. Such gradient is shown to affect the kinetics parameters obtained from the SPRI response. We pre- sent results obtained from a new delivery approach based on the use of air bubbles. The advantages offered by the new approach are demonstrated by using two different interacting biomolecular systems: the streptavidin-biotin system and the Ricinus Communis Agglutinin lectin-asialofetuin.