Lavanya Balasubramanian;Nurul Azim Bhuiyan;Asad Javied;Ashraf A. Fahmy;Fawzi Belblidia;Johann Sienz
{"title":"电动汽车用内部永磁电机的设计与优化","authors":"Lavanya Balasubramanian;Nurul Azim Bhuiyan;Asad Javied;Ashraf A. Fahmy;Fawzi Belblidia;Johann Sienz","doi":"10.30941/CESTEMS.2023.00021","DOIUrl":null,"url":null,"abstract":"This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance. Various geometry parameters such as magnet dimension, machine diameter, stator teeth height, and number of poles are analyzed to compare overall torque, power, and torque ripples in order to select the best design parameters and their ranges. Pyleecan, an open-source software, is used to design and optimize the motor for electric vehicle applications. Following optimization with Non-dominated Sorting Genetic Algorithm (NSGA-II), two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32% and 77%. Additionally, the impact of different magnet grades on the output performances is analyzed.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10172142/10144998.pdf","citationCount":"1","resultStr":"{\"title\":\"Design and Optimization of Interior Permanent Magnet (IPM) Motor for Electric Vehicle Applications\",\"authors\":\"Lavanya Balasubramanian;Nurul Azim Bhuiyan;Asad Javied;Ashraf A. Fahmy;Fawzi Belblidia;Johann Sienz\",\"doi\":\"10.30941/CESTEMS.2023.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance. Various geometry parameters such as magnet dimension, machine diameter, stator teeth height, and number of poles are analyzed to compare overall torque, power, and torque ripples in order to select the best design parameters and their ranges. Pyleecan, an open-source software, is used to design and optimize the motor for electric vehicle applications. Following optimization with Non-dominated Sorting Genetic Algorithm (NSGA-II), two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32% and 77%. Additionally, the impact of different magnet grades on the output performances is analyzed.\",\"PeriodicalId\":100229,\"journal\":{\"name\":\"CES Transactions on Electrical Machines and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/7873789/10172142/10144998.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CES Transactions on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10144998/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10144998/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Optimization of Interior Permanent Magnet (IPM) Motor for Electric Vehicle Applications
This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance. Various geometry parameters such as magnet dimension, machine diameter, stator teeth height, and number of poles are analyzed to compare overall torque, power, and torque ripples in order to select the best design parameters and their ranges. Pyleecan, an open-source software, is used to design and optimize the motor for electric vehicle applications. Following optimization with Non-dominated Sorting Genetic Algorithm (NSGA-II), two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32% and 77%. Additionally, the impact of different magnet grades on the output performances is analyzed.