固体膨胀管在石油工业中的应用

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY Rudarsko-Geolosko-Naftni Zbornik Pub Date : 2022-01-01 DOI:10.17794/rgn.2022.1.14
Nediljka Gaurina-Međimurec, Pavao Mesarić
{"title":"固体膨胀管在石油工业中的应用","authors":"Nediljka Gaurina-Međimurec, Pavao Mesarić","doi":"10.17794/rgn.2022.1.14","DOIUrl":null,"url":null,"abstract":"The development of solid expandable tubular (SET) technology and products (open hole liner, open hole clad, cased hole liner, liner hanger, internal casing patch, etc.) has enabled operators to plan well design in a new way and solve various problems that arise during drilling and exploitation on land and offshore. By including an expandable open hole liner, monobore open hole liner or monobore openhole clad in well design, it is possible to achieve a slim hole design and/or resolve unwanted situations that occur during the drilling of problem zones with minimal hole size reduction and reach hydrocarbon reserves which cannot be achieved economically by conventional technology. By installing an expandable cased hole liner or internal casing patch in production wells to cover the intervals of a corroded casing or to close old perforations, it is possible to extend the life cycle of a production well and increase the final hydrocarbon recovery and speed up the return on investment. The aim of this paper is to systematically review the relevant literature and give an overview of solid expandable tubular technology and its applications in the petroleum industry, as well as the cementing technology of open hole expandable liners. The available data for 21 case studies of SET application in onshore and offshore wells were analyzed in detail. Based on an extensive review of the literature and analyzed data, it can be concluded that SET technology is being successfully applied worldwide and that expandable liners with a diameter of 114.3 mm to 339.72 mm are being run in wells to ever greater depths (up to 5166 m) and in ever more extreme downhole conditions.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Solid Expandable Tubulars in the Petroleum Industry\",\"authors\":\"Nediljka Gaurina-Međimurec, Pavao Mesarić\",\"doi\":\"10.17794/rgn.2022.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of solid expandable tubular (SET) technology and products (open hole liner, open hole clad, cased hole liner, liner hanger, internal casing patch, etc.) has enabled operators to plan well design in a new way and solve various problems that arise during drilling and exploitation on land and offshore. By including an expandable open hole liner, monobore open hole liner or monobore openhole clad in well design, it is possible to achieve a slim hole design and/or resolve unwanted situations that occur during the drilling of problem zones with minimal hole size reduction and reach hydrocarbon reserves which cannot be achieved economically by conventional technology. By installing an expandable cased hole liner or internal casing patch in production wells to cover the intervals of a corroded casing or to close old perforations, it is possible to extend the life cycle of a production well and increase the final hydrocarbon recovery and speed up the return on investment. The aim of this paper is to systematically review the relevant literature and give an overview of solid expandable tubular technology and its applications in the petroleum industry, as well as the cementing technology of open hole expandable liners. The available data for 21 case studies of SET application in onshore and offshore wells were analyzed in detail. Based on an extensive review of the literature and analyzed data, it can be concluded that SET technology is being successfully applied worldwide and that expandable liners with a diameter of 114.3 mm to 339.72 mm are being run in wells to ever greater depths (up to 5166 m) and in ever more extreme downhole conditions.\",\"PeriodicalId\":44536,\"journal\":{\"name\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2022.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体膨胀管(SET)技术和产品(裸眼尾管、裸眼包层、套管井尾管、尾管悬挂器、套管内补片等)的发展,使作业者能够以一种新的方式规划井设计,解决陆上和海上钻井开发过程中出现的各种问题。通过在井设计中加入可膨胀裸眼尾管、单孔裸眼尾管或单孔裸眼包覆,可以实现小井眼设计和/或解决问题区域钻井过程中出现的不希望出现的情况,以最小的井眼尺寸减小,并获得传统技术无法经济实现的油气储量。通过在生产井中安装可膨胀套管井尾管或内部套管补片来覆盖受腐蚀的套管段或关闭旧射孔,可以延长生产井的生命周期,提高最终的油气采收率,加快投资回报。本文系统地回顾了相关文献,综述了固体膨胀管技术及其在石油工业中的应用,以及裸眼膨胀衬管固井技术。详细分析了21个SET在陆上和海上井中的应用案例。通过对大量文献和数据的分析,可以得出结论,SET技术在全球范围内得到了成功的应用,直径为114.3 mm至339.72 mm的膨胀尾管可以在更大的井深(高达5166米)和更极端的井下条件下使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Solid Expandable Tubulars in the Petroleum Industry
The development of solid expandable tubular (SET) technology and products (open hole liner, open hole clad, cased hole liner, liner hanger, internal casing patch, etc.) has enabled operators to plan well design in a new way and solve various problems that arise during drilling and exploitation on land and offshore. By including an expandable open hole liner, monobore open hole liner or monobore openhole clad in well design, it is possible to achieve a slim hole design and/or resolve unwanted situations that occur during the drilling of problem zones with minimal hole size reduction and reach hydrocarbon reserves which cannot be achieved economically by conventional technology. By installing an expandable cased hole liner or internal casing patch in production wells to cover the intervals of a corroded casing or to close old perforations, it is possible to extend the life cycle of a production well and increase the final hydrocarbon recovery and speed up the return on investment. The aim of this paper is to systematically review the relevant literature and give an overview of solid expandable tubular technology and its applications in the petroleum industry, as well as the cementing technology of open hole expandable liners. The available data for 21 case studies of SET application in onshore and offshore wells were analyzed in detail. Based on an extensive review of the literature and analyzed data, it can be concluded that SET technology is being successfully applied worldwide and that expandable liners with a diameter of 114.3 mm to 339.72 mm are being run in wells to ever greater depths (up to 5166 m) and in ever more extreme downhole conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
期刊最新文献
A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY IMPROVED CONCEPTUAL DESIGN OF LILW REPOSITORY ONE-STEP ELECTROCHEMICAL SYNTHESIS OF PEDOT BASED COMPOSITES FOR SUPERCAPACITOR APPLICATIONS A COMPARATIVE STUDY OF THE BIVARIATE STATISTICAL METHODS AND THE ANALYTICAL HIERARCHICAL PROCESS FOR THE ASSESSMENT OF MASS MOVEMENT SUSCEPTIBILITY. A CASE STUDY: THE LM-116 ROAD – PERU THE INTERACTION AND SYNERGIC EFFECT OF PARTICLE SIZE ON FLOTATION EFFICIENCY: A COMPARISON STUDY OF RECOVERY BY SIZE, AND BY LIBERATION BETWEEN LAB AND INDUSTRIAL SCALE DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1