间接拉伸载荷下千粒岩Kaiser效应的机理

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY Rudarsko-Geolosko-Naftni Zbornik Pub Date : 2022-01-01 DOI:10.17794/rgn.2022.3.2
Mohammadmahdi Dinmohammadpour, M. Nikkhah, K. Goshtasbi, K. Ahangari
{"title":"间接拉伸载荷下千粒岩Kaiser效应的机理","authors":"Mohammadmahdi Dinmohammadpour, M. Nikkhah, K. Goshtasbi, K. Ahangari","doi":"10.17794/rgn.2022.3.2","DOIUrl":null,"url":null,"abstract":"Determination of in-situ stress serves as an important step in the design and construction of civil and mining projects, among others. Conventional methods of the in-situ stress measurement are time- and cost-intensive. Therefore, the application of low-cost yet rapid methodologies for in-situ stress evaluation has been increasingly regarded by researchers. The Kaiser effect-based acoustic emission method is one of such novel approaches to the in-situ stress evaluation. Not only the point at which the Kaiser effect occurs, but also the mechanism of the Kaiser effect is of paramount importance. In this research, acoustic emission tests were conducted on phyllite rock samples under Brazilian tensile loading to collect a variety of acoustic data, including the amplitude, rise time, count, duration, and energy. Then, the Kaiser effect point was determined using the collected data on acoustic parameters, with its occurrence mechanism investigated. In addition, mathematical transformations were adopted to transform the acoustic signal from the time domain to the frequency domain, where the peak frequency was analyzed. The results of the RA/AF ratio analysis showed that the acoustic emission was sourced from tensile micro-cracks. Moreover, the high level of energy indicated a high intensity of crack formation at the Kaiser effect point. The large number of received hits showed that the count of generated cracks increases abruptly within the range of the Kaiser effect. In addition, the obtained high value of the peak frequency implied that the crack growth rate is high at the Kaiser effect point.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE MECHANISM OF THE KAISER EFFECT IN PHYLLITE UNDER INDIRECT TENSILE LOADING\",\"authors\":\"Mohammadmahdi Dinmohammadpour, M. Nikkhah, K. Goshtasbi, K. Ahangari\",\"doi\":\"10.17794/rgn.2022.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determination of in-situ stress serves as an important step in the design and construction of civil and mining projects, among others. Conventional methods of the in-situ stress measurement are time- and cost-intensive. Therefore, the application of low-cost yet rapid methodologies for in-situ stress evaluation has been increasingly regarded by researchers. The Kaiser effect-based acoustic emission method is one of such novel approaches to the in-situ stress evaluation. Not only the point at which the Kaiser effect occurs, but also the mechanism of the Kaiser effect is of paramount importance. In this research, acoustic emission tests were conducted on phyllite rock samples under Brazilian tensile loading to collect a variety of acoustic data, including the amplitude, rise time, count, duration, and energy. Then, the Kaiser effect point was determined using the collected data on acoustic parameters, with its occurrence mechanism investigated. In addition, mathematical transformations were adopted to transform the acoustic signal from the time domain to the frequency domain, where the peak frequency was analyzed. The results of the RA/AF ratio analysis showed that the acoustic emission was sourced from tensile micro-cracks. Moreover, the high level of energy indicated a high intensity of crack formation at the Kaiser effect point. The large number of received hits showed that the count of generated cracks increases abruptly within the range of the Kaiser effect. In addition, the obtained high value of the peak frequency implied that the crack growth rate is high at the Kaiser effect point.\",\"PeriodicalId\":44536,\"journal\":{\"name\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2022.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地应力的确定是土木和采矿项目设计和施工的重要步骤。传统的地应力测量方法既费时又费钱。因此,低成本、快速的地应力评价方法越来越受到研究人员的重视。基于Kaiser效应的声发射法是地应力评价的新方法之一。不仅凯撒效应发生的点,而且凯撒效应的机制都是至关重要的。本研究对巴西拉伸载荷下的千层岩试样进行声发射试验,收集振幅、上升时间、次数、持续时间、能量等多种声学数据。利用采集到的声学参数数据确定了Kaiser效应点,并对其发生机理进行了研究。此外,采用数学变换将声信号从时域变换到频域,并对频域的峰值频率进行分析。RA/AF分析结果表明,声发射来源于拉伸微裂纹。此外,高能量水平表明在Kaiser效应点处裂纹形成强度高。大量的接收命中表明,在凯撒效应范围内,产生的裂纹数量急剧增加。此外,获得的高峰值频率值表明裂纹在Kaiser效应点处的扩展速率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE MECHANISM OF THE KAISER EFFECT IN PHYLLITE UNDER INDIRECT TENSILE LOADING
Determination of in-situ stress serves as an important step in the design and construction of civil and mining projects, among others. Conventional methods of the in-situ stress measurement are time- and cost-intensive. Therefore, the application of low-cost yet rapid methodologies for in-situ stress evaluation has been increasingly regarded by researchers. The Kaiser effect-based acoustic emission method is one of such novel approaches to the in-situ stress evaluation. Not only the point at which the Kaiser effect occurs, but also the mechanism of the Kaiser effect is of paramount importance. In this research, acoustic emission tests were conducted on phyllite rock samples under Brazilian tensile loading to collect a variety of acoustic data, including the amplitude, rise time, count, duration, and energy. Then, the Kaiser effect point was determined using the collected data on acoustic parameters, with its occurrence mechanism investigated. In addition, mathematical transformations were adopted to transform the acoustic signal from the time domain to the frequency domain, where the peak frequency was analyzed. The results of the RA/AF ratio analysis showed that the acoustic emission was sourced from tensile micro-cracks. Moreover, the high level of energy indicated a high intensity of crack formation at the Kaiser effect point. The large number of received hits showed that the count of generated cracks increases abruptly within the range of the Kaiser effect. In addition, the obtained high value of the peak frequency implied that the crack growth rate is high at the Kaiser effect point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
期刊最新文献
A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY IMPROVED CONCEPTUAL DESIGN OF LILW REPOSITORY ONE-STEP ELECTROCHEMICAL SYNTHESIS OF PEDOT BASED COMPOSITES FOR SUPERCAPACITOR APPLICATIONS A COMPARATIVE STUDY OF THE BIVARIATE STATISTICAL METHODS AND THE ANALYTICAL HIERARCHICAL PROCESS FOR THE ASSESSMENT OF MASS MOVEMENT SUSCEPTIBILITY. A CASE STUDY: THE LM-116 ROAD – PERU THE INTERACTION AND SYNERGIC EFFECT OF PARTICLE SIZE ON FLOTATION EFFICIENCY: A COMPARISON STUDY OF RECOVERY BY SIZE, AND BY LIBERATION BETWEEN LAB AND INDUSTRIAL SCALE DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1