厄瓜多尔shushufindi油田测井资料岩性解释的k -最近邻法与k -均值聚类分析比较

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY Rudarsko-Geolosko-Naftni Zbornik Pub Date : 2022-01-01 DOI:10.17794/rgn.2022.4.13
Franklin Gómez, Yetzabbel G. Flores, M. Vadászi
{"title":"厄瓜多尔shushufindi油田测井资料岩性解释的k -最近邻法与k -均值聚类分析比较","authors":"Franklin Gómez, Yetzabbel G. Flores, M. Vadászi","doi":"10.17794/rgn.2022.4.13","DOIUrl":null,"url":null,"abstract":"The lithological interpretation of well logs is a fundamental task in Earth science that can be accomplished with the application of various machine learning algorithms. The current investigation attempts to evaluate the performance of the K-nearest-neighbour Density Estimate (KNN) and K-means cluster analysis methods for predicting lithology in a dataset of logs measured in the siliciclastic reservoir of the Shushufindi Oilfield of Ecuador. The comparison of lithological interpretation is assembled using classical methods, such as qualitative interpretation and density-neutron cross plot. The lithological interpretation results showed that the supervised method KNN has a higher fitting level with the comparison interpretation data (87.3%, 1145 m predicted of 1311.1 m interpreted) than the results of the K-means method (71.6%, 939.7 m predicted of 1311.1 m interpreted). The geological nature of the reservoir creates a level of a discrepancy because of the near geophysical responses between limestone and intermedia grain size rocks. The possibility of controlling this in the KNN algorithm makes it preferable for usage in these types of reservoir lithological interpretation.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARATIVE ANALYSIS OF THE K-NEAREST-NEIGHBOUR METHOD AND K-MEANS CLUSTER ANALYSIS FOR LITHOLOGICAL INTERPRETATION OF WELL LOGS OF THE SHUSHUFINDI OILFIELD, ECUADOR\",\"authors\":\"Franklin Gómez, Yetzabbel G. Flores, M. Vadászi\",\"doi\":\"10.17794/rgn.2022.4.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lithological interpretation of well logs is a fundamental task in Earth science that can be accomplished with the application of various machine learning algorithms. The current investigation attempts to evaluate the performance of the K-nearest-neighbour Density Estimate (KNN) and K-means cluster analysis methods for predicting lithology in a dataset of logs measured in the siliciclastic reservoir of the Shushufindi Oilfield of Ecuador. The comparison of lithological interpretation is assembled using classical methods, such as qualitative interpretation and density-neutron cross plot. The lithological interpretation results showed that the supervised method KNN has a higher fitting level with the comparison interpretation data (87.3%, 1145 m predicted of 1311.1 m interpreted) than the results of the K-means method (71.6%, 939.7 m predicted of 1311.1 m interpreted). The geological nature of the reservoir creates a level of a discrepancy because of the near geophysical responses between limestone and intermedia grain size rocks. The possibility of controlling this in the KNN algorithm makes it preferable for usage in these types of reservoir lithological interpretation.\",\"PeriodicalId\":44536,\"journal\":{\"name\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2022.4.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.4.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

测井曲线的岩性解释是地球科学的一项基本任务,可以通过应用各种机器学习算法来完成。目前的研究试图评估k -最近邻密度估计(KNN)和k -均值聚类分析方法在预测厄瓜多尔Shushufindi油田硅塑性储层测井数据集中的性能。采用定性解释和密度-中子交叉图等经典方法对岩性解释进行比较。岩性解释结果表明,监督式KNN方法与对比解释数据的拟合水平(87.3%,1311.1 m解释预测1145 m)高于K-means方法(71.6%,1311.1 m解释预测939.7 m)。储层的地质性质造成了一定程度的差异,因为石灰岩和中等粒度岩石之间的地球物理响应接近。在KNN算法中控制这种可能性使其更适合用于这些类型的油藏岩性解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARATIVE ANALYSIS OF THE K-NEAREST-NEIGHBOUR METHOD AND K-MEANS CLUSTER ANALYSIS FOR LITHOLOGICAL INTERPRETATION OF WELL LOGS OF THE SHUSHUFINDI OILFIELD, ECUADOR
The lithological interpretation of well logs is a fundamental task in Earth science that can be accomplished with the application of various machine learning algorithms. The current investigation attempts to evaluate the performance of the K-nearest-neighbour Density Estimate (KNN) and K-means cluster analysis methods for predicting lithology in a dataset of logs measured in the siliciclastic reservoir of the Shushufindi Oilfield of Ecuador. The comparison of lithological interpretation is assembled using classical methods, such as qualitative interpretation and density-neutron cross plot. The lithological interpretation results showed that the supervised method KNN has a higher fitting level with the comparison interpretation data (87.3%, 1145 m predicted of 1311.1 m interpreted) than the results of the K-means method (71.6%, 939.7 m predicted of 1311.1 m interpreted). The geological nature of the reservoir creates a level of a discrepancy because of the near geophysical responses between limestone and intermedia grain size rocks. The possibility of controlling this in the KNN algorithm makes it preferable for usage in these types of reservoir lithological interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
期刊最新文献
A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY IMPROVED CONCEPTUAL DESIGN OF LILW REPOSITORY ONE-STEP ELECTROCHEMICAL SYNTHESIS OF PEDOT BASED COMPOSITES FOR SUPERCAPACITOR APPLICATIONS A COMPARATIVE STUDY OF THE BIVARIATE STATISTICAL METHODS AND THE ANALYTICAL HIERARCHICAL PROCESS FOR THE ASSESSMENT OF MASS MOVEMENT SUSCEPTIBILITY. A CASE STUDY: THE LM-116 ROAD – PERU THE INTERACTION AND SYNERGIC EFFECT OF PARTICLE SIZE ON FLOTATION EFFICIENCY: A COMPARISON STUDY OF RECOVERY BY SIZE, AND BY LIBERATION BETWEEN LAB AND INDUSTRIAL SCALE DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1