{"title":"基于mcmc的信用评级聚合算法解决数据不足问题","authors":"Viktor Lapshin, Anton Markov","doi":"10.22394/1993-7601-2022-68-50-72","DOIUrl":null,"url":null,"abstract":"This paper investigates how credit rating aggregation might lead to a more efficient estimation of key portfolio risk management metrics: expected credit losses (ECL) and risk‐weighted assets (RWA). The proposed technique for credit rating aggregation is based on the Markov Chain Monte‐Carlo methodology and leads to a statistically smaller variance of ECL and RWA than the naïve and distribution‐based alternatives. This conclusion holds for three public datasets and four simulated studies. The paper results might be helpful for portfolios that suffer from data insufficiency or rely on external ratings for credit risk assessment: portfolios of international companies, interbank loans, and sovereign debt.","PeriodicalId":8045,"journal":{"name":"Applied Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCMC-based credit rating aggregation algorithm to tackle data insufficiency\",\"authors\":\"Viktor Lapshin, Anton Markov\",\"doi\":\"10.22394/1993-7601-2022-68-50-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates how credit rating aggregation might lead to a more efficient estimation of key portfolio risk management metrics: expected credit losses (ECL) and risk‐weighted assets (RWA). The proposed technique for credit rating aggregation is based on the Markov Chain Monte‐Carlo methodology and leads to a statistically smaller variance of ECL and RWA than the naïve and distribution‐based alternatives. This conclusion holds for three public datasets and four simulated studies. The paper results might be helpful for portfolios that suffer from data insufficiency or rely on external ratings for credit risk assessment: portfolios of international companies, interbank loans, and sovereign debt.\",\"PeriodicalId\":8045,\"journal\":{\"name\":\"Applied Econometrics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22394/1993-7601-2022-68-50-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22394/1993-7601-2022-68-50-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
MCMC-based credit rating aggregation algorithm to tackle data insufficiency
This paper investigates how credit rating aggregation might lead to a more efficient estimation of key portfolio risk management metrics: expected credit losses (ECL) and risk‐weighted assets (RWA). The proposed technique for credit rating aggregation is based on the Markov Chain Monte‐Carlo methodology and leads to a statistically smaller variance of ECL and RWA than the naïve and distribution‐based alternatives. This conclusion holds for three public datasets and four simulated studies. The paper results might be helpful for portfolios that suffer from data insufficiency or rely on external ratings for credit risk assessment: portfolios of international companies, interbank loans, and sovereign debt.
Applied EconometricsEconomics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍:
The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.