{"title":"利用玉米淀粉和废生物质合成生态友好型坡缕石-石膏伴生矿复合材料","authors":"Haifeng Tian, Peng Gao, Hai-Xin Tian, F. Zha, Zengjun Wang, Xiaojun Guo, Xiaohua Tang, Yue Chang","doi":"10.25082/mer.2021.01.006","DOIUrl":null,"url":null,"abstract":"Composite materials were prepared with palygorskite-gypsum associated ore, modified corn starch and corn stalk as raw materials, glycerin as plasticizer, ammonium persulfate as initiator, KH-560 as organosilane coupling agent and linseed gum as adhesion promoter. Tensile strength, flexural resistance and compressive strength were used as the evaluation criteria to investigate the optimal ratio of composite material. The effect of the content of palygorskite-gypsum associated ore and glycerol, the ratio of modified starch to corn stalk as well as the ratio of initiator to coupling agent on the mechanical properties was investigated. Composite materials were characterized by means of SEM, FT-IR, XRD and TG/DTG. The impact on the environment of composite material was evaluated via measuring the degradation and bacteriostatic properties. The degradation rate of the composite reached 52.7% when the degradation time was 42 d and the composite had a good antibacterial property.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of an eco-friendly composite of palygorskite-gypsum associated ore using corn starch and waste biomass\",\"authors\":\"Haifeng Tian, Peng Gao, Hai-Xin Tian, F. Zha, Zengjun Wang, Xiaojun Guo, Xiaohua Tang, Yue Chang\",\"doi\":\"10.25082/mer.2021.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials were prepared with palygorskite-gypsum associated ore, modified corn starch and corn stalk as raw materials, glycerin as plasticizer, ammonium persulfate as initiator, KH-560 as organosilane coupling agent and linseed gum as adhesion promoter. Tensile strength, flexural resistance and compressive strength were used as the evaluation criteria to investigate the optimal ratio of composite material. The effect of the content of palygorskite-gypsum associated ore and glycerol, the ratio of modified starch to corn stalk as well as the ratio of initiator to coupling agent on the mechanical properties was investigated. Composite materials were characterized by means of SEM, FT-IR, XRD and TG/DTG. The impact on the environment of composite material was evaluated via measuring the degradation and bacteriostatic properties. The degradation rate of the composite reached 52.7% when the degradation time was 42 d and the composite had a good antibacterial property.\",\"PeriodicalId\":63081,\"journal\":{\"name\":\"材料工程研究(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料工程研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.25082/mer.2021.01.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料工程研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.25082/mer.2021.01.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of an eco-friendly composite of palygorskite-gypsum associated ore using corn starch and waste biomass
Composite materials were prepared with palygorskite-gypsum associated ore, modified corn starch and corn stalk as raw materials, glycerin as plasticizer, ammonium persulfate as initiator, KH-560 as organosilane coupling agent and linseed gum as adhesion promoter. Tensile strength, flexural resistance and compressive strength were used as the evaluation criteria to investigate the optimal ratio of composite material. The effect of the content of palygorskite-gypsum associated ore and glycerol, the ratio of modified starch to corn stalk as well as the ratio of initiator to coupling agent on the mechanical properties was investigated. Composite materials were characterized by means of SEM, FT-IR, XRD and TG/DTG. The impact on the environment of composite material was evaluated via measuring the degradation and bacteriostatic properties. The degradation rate of the composite reached 52.7% when the degradation time was 42 d and the composite had a good antibacterial property.