雅典科学杂志

Richard Wainwright, A. Shenfield
{"title":"雅典科学杂志","authors":"Richard Wainwright, A. Shenfield","doi":"10.30958/AJS","DOIUrl":null,"url":null,"abstract":"The optimisation and validation of a classifiers performance when applied to real \nworld problems is not always effectively shown. In much of the literature describing \nthe application of artificial neural network architectures to Human Activity \nRecognition (HAR) problems, postural transitions are grouped together and treated as \na singular class. This paper proposes, investigates and validates the development of \nan optimised artificial neural network based on Long-Short Term Memory techniques \n(LSTM), with repeated cross validation used to validate the performance of the \nclassifier. The results of the optimised LSTM classifier are comparable or better to \nthat of previous research making use of the same dataset, achieving 95% accuracy \nunder repeated 10-fold cross validation using grouped postural transitions. The work \nin this paper also achieves 94% accuracy under repeated 10-fold cross validation \nwhilst treating each common postural transition as a separate class (and thus \nproviding more context to each activity).","PeriodicalId":91843,"journal":{"name":"Athens journal of sciences","volume":"6 1","pages":"19-34"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATHENS JOURNAL OF SCIENCES\",\"authors\":\"Richard Wainwright, A. Shenfield\",\"doi\":\"10.30958/AJS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimisation and validation of a classifiers performance when applied to real \\nworld problems is not always effectively shown. In much of the literature describing \\nthe application of artificial neural network architectures to Human Activity \\nRecognition (HAR) problems, postural transitions are grouped together and treated as \\na singular class. This paper proposes, investigates and validates the development of \\nan optimised artificial neural network based on Long-Short Term Memory techniques \\n(LSTM), with repeated cross validation used to validate the performance of the \\nclassifier. The results of the optimised LSTM classifier are comparable or better to \\nthat of previous research making use of the same dataset, achieving 95% accuracy \\nunder repeated 10-fold cross validation using grouped postural transitions. The work \\nin this paper also achieves 94% accuracy under repeated 10-fold cross validation \\nwhilst treating each common postural transition as a separate class (and thus \\nproviding more context to each activity).\",\"PeriodicalId\":91843,\"journal\":{\"name\":\"Athens journal of sciences\",\"volume\":\"6 1\",\"pages\":\"19-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Athens journal of sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30958/AJS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Athens journal of sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30958/AJS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当应用于实际问题时,分类器性能的优化和验证并不总是有效地显示出来。在许多描述人工神经网络架构在人类活动识别(HAR)问题中的应用的文献中,姿势转换被分组在一起,并被视为一个单一的类别。本文提出,研究并验证了基于长短期记忆技术(LSTM)的优化人工神经网络的发展,并使用重复交叉验证来验证分类器的性能。优化后的LSTM分类器的结果与使用相同数据集的先前研究相当或更好,在使用分组姿势转换的重复10倍交叉验证下达到95%的准确率。在重复的10倍交叉验证下,本文的工作也达到了94%的准确率,同时将每个常见的姿势转换作为一个单独的类别(从而为每个活动提供更多的上下文)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATHENS JOURNAL OF SCIENCES
The optimisation and validation of a classifiers performance when applied to real world problems is not always effectively shown. In much of the literature describing the application of artificial neural network architectures to Human Activity Recognition (HAR) problems, postural transitions are grouped together and treated as a singular class. This paper proposes, investigates and validates the development of an optimised artificial neural network based on Long-Short Term Memory techniques (LSTM), with repeated cross validation used to validate the performance of the classifier. The results of the optimised LSTM classifier are comparable or better to that of previous research making use of the same dataset, achieving 95% accuracy under repeated 10-fold cross validation using grouped postural transitions. The work in this paper also achieves 94% accuracy under repeated 10-fold cross validation whilst treating each common postural transition as a separate class (and thus providing more context to each activity).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Growth of Crayfish, which Serves as an Indicator of Clean and Healthy Water Ecosystems in the Mediterranean Region Identifying Sustainability Efforts in Company’s Reports Using Text Mining and Machine Learning Generative Urban Design in the Field of Infrastructure: An Optimizing Solution for Connecting Fier and Vlora County by a 600 m Bridge over Selenica River, Albania Infrastructures of Large-Scale Geothermal Energy Projects in Kenya: Materialization, Generativity, and Socio-Economic Development Linkages An Analysis of Stream Flow and Flood Frequency: A Case Study from Downstream of Kelani River Basin, Sri Lanka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1