人工神经网络在季节性旅游需求建模中的应用——以克罗地亚为例

IF 0.3 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka Pub Date : 2020-01-01 DOI:10.31784/zvr.8.1.2
M. Gregorić, T. Baldigara
{"title":"人工神经网络在季节性旅游需求建模中的应用——以克罗地亚为例","authors":"M. Gregorić, T. Baldigara","doi":"10.31784/zvr.8.1.2","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to design an artificial neural network in the attempt to define the data generating process of the number of German tourist arrivals in Croatia considering the strong seasonal character of empirical data. The presence of seasonal unit roots in tourism demand determinants is analysed using the approach developed by Hylleberg, Engle, Granger and Yoo – Hegy test. The study is based on seasonality analysis and Artificial Neural Networks approach in building a model which intend to describe the behaviour of the German tourist flows to Croatia. Different neural network architectures were trained and tested, and after the modelling phase, the forecasting accuracy and model performances were analysed. Model performance and forecasting accuracy evaluation was tested using the mean absolute percentage error. Based on the augmented HEGY test procedure it can be concluded the German tourist arrivals to the Republic of Croatia have nonstationary behaviour associated with the zero frequency and seasonal frequency. Taking this into consideration, in the analysis of the phenomenon it is necessary to consider its seasonal character. Given the importance of the tourism for Croatian economic development, the research results could be useful, for both, researchers and practitioners, in the process of planning and routing the future Croatian hotel industry development and improvement of business performances.","PeriodicalId":40998,"journal":{"name":"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.31784/zvr.8.1.2","citationCount":"1","resultStr":"{\"title\":\"Artificial neural networks in modelling seasonal tourism demand - case study of Croatia\",\"authors\":\"M. Gregorić, T. Baldigara\",\"doi\":\"10.31784/zvr.8.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to design an artificial neural network in the attempt to define the data generating process of the number of German tourist arrivals in Croatia considering the strong seasonal character of empirical data. The presence of seasonal unit roots in tourism demand determinants is analysed using the approach developed by Hylleberg, Engle, Granger and Yoo – Hegy test. The study is based on seasonality analysis and Artificial Neural Networks approach in building a model which intend to describe the behaviour of the German tourist flows to Croatia. Different neural network architectures were trained and tested, and after the modelling phase, the forecasting accuracy and model performances were analysed. Model performance and forecasting accuracy evaluation was tested using the mean absolute percentage error. Based on the augmented HEGY test procedure it can be concluded the German tourist arrivals to the Republic of Croatia have nonstationary behaviour associated with the zero frequency and seasonal frequency. Taking this into consideration, in the analysis of the phenomenon it is necessary to consider its seasonal character. Given the importance of the tourism for Croatian economic development, the research results could be useful, for both, researchers and practitioners, in the process of planning and routing the future Croatian hotel industry development and improvement of business performances.\",\"PeriodicalId\":40998,\"journal\":{\"name\":\"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.31784/zvr.8.1.2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31784/zvr.8.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31784/zvr.8.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是设计一个人工神经网络,试图定义克罗地亚德国游客到达人数的数据生成过程,考虑到经验数据的强烈季节性特征。利用Hylleberg、Engle、Granger和Yoo - Hegy检验开发的方法分析了旅游需求决定因素中季节性单位根的存在。该研究基于季节性分析和人工神经网络方法,建立了一个模型,旨在描述德国游客流向克罗地亚的行为。对不同的神经网络结构进行了训练和测试,并在建模阶段对预测精度和模型性能进行了分析。采用平均绝对误差百分比对模型性能和预测精度进行了检验。基于增强的HEGY测试程序,可以得出结论,德国游客到达克罗地亚共和国具有与零频率和季节频率相关的非平稳行为。考虑到这一点,在分析这一现象时,有必要考虑它的季节性特征。鉴于旅游业对克罗地亚经济发展的重要性,研究结果可能是有用的,无论是研究人员和从业者,在规划和路由未来克罗地亚酒店业的发展和改善经营业绩的过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural networks in modelling seasonal tourism demand - case study of Croatia
The purpose of this paper is to design an artificial neural network in the attempt to define the data generating process of the number of German tourist arrivals in Croatia considering the strong seasonal character of empirical data. The presence of seasonal unit roots in tourism demand determinants is analysed using the approach developed by Hylleberg, Engle, Granger and Yoo – Hegy test. The study is based on seasonality analysis and Artificial Neural Networks approach in building a model which intend to describe the behaviour of the German tourist flows to Croatia. Different neural network architectures were trained and tested, and after the modelling phase, the forecasting accuracy and model performances were analysed. Model performance and forecasting accuracy evaluation was tested using the mean absolute percentage error. Based on the augmented HEGY test procedure it can be concluded the German tourist arrivals to the Republic of Croatia have nonstationary behaviour associated with the zero frequency and seasonal frequency. Taking this into consideration, in the analysis of the phenomenon it is necessary to consider its seasonal character. Given the importance of the tourism for Croatian economic development, the research results could be useful, for both, researchers and practitioners, in the process of planning and routing the future Croatian hotel industry development and improvement of business performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
25.00%
发文量
2
期刊最新文献
Determinante potpore lokalnog stanovništva razvoju turizma Controlling 4.0 in times of new technologies application Istraživanje utjecaja pandemije COVID-19 na moderno vodstvo i promjenu paradigme HRM-a Using mobile applications for language learning as part of language classes The significance of cross-cultural barriers in organizational communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1