I. Dupliak, Yuchen Liang, Guozhu Yan, Fenping Li, K. Ivaniuk, Xiaogang Li
{"title":"皮秒激光加工制造超疏水表面的不锈钢","authors":"I. Dupliak, Yuchen Liang, Guozhu Yan, Fenping Li, K. Ivaniuk, Xiaogang Li","doi":"10.3116/16091833/21/4/170/2020","DOIUrl":null,"url":null,"abstract":"We create a high-precision surface microstructure at the surfaces of SAE 304 stainless steel plates, using picosecond-laser pulses with high repetition rates. The surfaces acquire cross-groove patterns due to a line-by-line laser ablation technology. The wettability of the microstructured metal surface is studied. The microstructured surface provides a superhydrophobicity with good anticorrosion and antibacterial properties, which can extend significantly the scope of applications of the underlying material.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Picosecond-laser processing of stainless steel for fabricating superhydrophobic surfaces\",\"authors\":\"I. Dupliak, Yuchen Liang, Guozhu Yan, Fenping Li, K. Ivaniuk, Xiaogang Li\",\"doi\":\"10.3116/16091833/21/4/170/2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We create a high-precision surface microstructure at the surfaces of SAE 304 stainless steel plates, using picosecond-laser pulses with high repetition rates. The surfaces acquire cross-groove patterns due to a line-by-line laser ablation technology. The wettability of the microstructured metal surface is studied. The microstructured surface provides a superhydrophobicity with good anticorrosion and antibacterial properties, which can extend significantly the scope of applications of the underlying material.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3116/16091833/21/4/170/2020\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/21/4/170/2020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Picosecond-laser processing of stainless steel for fabricating superhydrophobic surfaces
We create a high-precision surface microstructure at the surfaces of SAE 304 stainless steel plates, using picosecond-laser pulses with high repetition rates. The surfaces acquire cross-groove patterns due to a line-by-line laser ablation technology. The wettability of the microstructured metal surface is studied. The microstructured surface provides a superhydrophobicity with good anticorrosion and antibacterial properties, which can extend significantly the scope of applications of the underlying material.