尾部条件期望的线性时间精确点阵算法

IF 0.3 Q4 BUSINESS, FINANCE Algorithmic Finance Pub Date : 2014-05-26 DOI:10.3233/AF-140034
Bryant Chen, William W. Y. Hsu, Jan-Ming Ho, M. Kao
{"title":"尾部条件期望的线性时间精确点阵算法","authors":"Bryant Chen, William W. Y. Hsu, Jan-Ming Ho, M. Kao","doi":"10.3233/AF-140034","DOIUrl":null,"url":null,"abstract":"This paper proposes novel lattice algorithms to compute tail conditional expectation of European calls and puts in linear time. We incorporate the technique of prefix-sum into tilting, trinomial, and extrapolation algorithms as well as some syntheses of these algorithms. Furthermore, we introduce fractional-step lattices to help reduce interpolation error in the extrapolation algorithms. We demonstrate the efficiency and accuracy of these algorithms with numerical results. A key finding is that combining the techniques of tilting lattice, extrapolation, and fractional steps substantially increases speed and accuracy.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-140034","citationCount":"5","resultStr":"{\"title\":\"Linear-Time Accurate Lattice Algorithms for Tail Conditional Expectation\",\"authors\":\"Bryant Chen, William W. Y. Hsu, Jan-Ming Ho, M. Kao\",\"doi\":\"10.3233/AF-140034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes novel lattice algorithms to compute tail conditional expectation of European calls and puts in linear time. We incorporate the technique of prefix-sum into tilting, trinomial, and extrapolation algorithms as well as some syntheses of these algorithms. Furthermore, we introduce fractional-step lattices to help reduce interpolation error in the extrapolation algorithms. We demonstrate the efficiency and accuracy of these algorithms with numerical results. A key finding is that combining the techniques of tilting lattice, extrapolation, and fractional steps substantially increases speed and accuracy.\",\"PeriodicalId\":42207,\"journal\":{\"name\":\"Algorithmic Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/AF-140034\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/AF-140034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-140034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的点阵算法来计算线性时间内欧式期权的尾条件期望。我们将前缀和技术纳入倾斜、三叉和外推算法以及这些算法的一些综合。此外,我们引入了分数阶格来帮助减少外推算法中的插值误差。用数值结果证明了这些算法的有效性和准确性。一个关键的发现是,将倾斜点阵、外推和分数步相结合,大大提高了速度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear-Time Accurate Lattice Algorithms for Tail Conditional Expectation
This paper proposes novel lattice algorithms to compute tail conditional expectation of European calls and puts in linear time. We incorporate the technique of prefix-sum into tilting, trinomial, and extrapolation algorithms as well as some syntheses of these algorithms. Furthermore, we introduce fractional-step lattices to help reduce interpolation error in the extrapolation algorithms. We demonstrate the efficiency and accuracy of these algorithms with numerical results. A key finding is that combining the techniques of tilting lattice, extrapolation, and fractional steps substantially increases speed and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
期刊最新文献
Combining low-volatility and mean-reversion anomalies: Better together? Guidelines for building a realistic algorithmic trading market simulator for backtesting while incorporating market impact Graph embedded dynamic mode decomposition for stock price prediction Interest rate derivatives for the fractional Cox-Ingersoll-Ross model How smart is a momentum strategy? An empirical study of Indian equities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1