补充血管内皮生长因子提高高血糖大鼠皮肤抗氧化能力

IF 1 Q3 MULTIDISCIPLINARY SCIENCES gazi university journal of science Pub Date : 2023-01-01 DOI:10.35378/gujs.1082697
Ebru Uzun, Doç. Dr. Barbaros Balabanli, Ş. C. Cevher
{"title":"补充血管内皮生长因子提高高血糖大鼠皮肤抗氧化能力","authors":"Ebru Uzun, Doç. Dr. Barbaros Balabanli, Ş. C. Cevher","doi":"10.35378/gujs.1082697","DOIUrl":null,"url":null,"abstract":"The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vascular Endothelial Growth Factor Supplementation Enhance Skin Antioxidant Capacity in Hyperglycemic Rats\",\"authors\":\"Ebru Uzun, Doç. Dr. Barbaros Balabanli, Ş. C. Cevher\",\"doi\":\"10.35378/gujs.1082697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.\",\"PeriodicalId\":12615,\"journal\":{\"name\":\"gazi university journal of science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"gazi university journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35378/gujs.1082697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1082697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

糖尿病动物伤口愈合延迟的根本原因包括生长因子产生不足或其破坏增加。血管生长因子(Vascular Growth Factor, VEGF)在粘膜和皮肤伤口的愈合过程中,特别是在新血管形成过程中具有生物学作用。我们计划研究在糖尿病大鼠局部应用VEGF治疗过程中发生的氧化-抗氧化事件。实验采用链脲佐菌素诱导的成年雌性Wistar白化大鼠糖尿病36例。在大鼠背部部位进行切口创面。将大鼠分为3组:未经治疗(阴性对照)组(n=12)、壳聚糖组(n=12)、壳聚糖+ VEGF组(n=12)。除对照组和阴性对照组外,治疗持续3 d和7 d。创面愈合后第3、7天处死。采用生化方法测定皮肤组织中抗氧化和氧化参数。与其他组相比,局部应用VEGF可降低第3天NOx水平。此外,它增加了伤口组织GSH和AA水平,从而有助于增强组织抗氧化能力。综上所述,VEGF的应用增加了组织的抗氧化能力,同时减少了氧化应激,从而对伤口愈合过程有积极的加速作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vascular Endothelial Growth Factor Supplementation Enhance Skin Antioxidant Capacity in Hyperglycemic Rats
The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
gazi university journal of science
gazi university journal of science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
11.10%
发文量
87
期刊介绍: The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.
期刊最新文献
Application Of Biomimetic Strategies In Building Envelope Design For Water Harvesting Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review Hybrid Deep Learning Model for Earthquake Time Prediction Expression patterns of eighteen genes involved in crucial cellular processes in the TP53 pathway in Multiple Myeloma Effects of Mechanical Milling and FAST Sintering on Mg Powders: Microstructural Analysis and Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1