光谱学与影像学的结合,优化排尿功能障碍的评估

IF 0.3 Q4 SPECTROSCOPY Biomedical Spectroscopy and Imaging Pub Date : 2016-01-01 DOI:10.3233/BSI-160149
L. Stothers, A. Macnab
{"title":"光谱学与影像学的结合,优化排尿功能障碍的评估","authors":"L. Stothers, A. Macnab","doi":"10.3233/BSI-160149","DOIUrl":null,"url":null,"abstract":"Voiding dysfunction occurs due to the interplay of anatomic, physiologic and functional elements. Hence, integration of new imaging and spectroscopy modalities offers the potential for improving patient assessment by enabling the causal structural defects, formal staging of pelvic floor dysfunction and underlying physiologic mechanisms to be better defined. The purpose of this review is to outline the limitations of current imaging, and highlight the advantages of newer technologies in the evaluation of patients with voiding dysfunction due to loss of structural integrity of the pelvic floor. The everyday action of voiding belies the complex interplay of neural control of the voiding cycle, precise function of healthy organ systems and hemodynamic changes in the microcirculation required for the bladder to fill and empty normally. Brain mediated control initiates voluntary voiding, and integrity of the spinal cord is required to transmit neural signaling to the bladder. A spino-bulbo-spinal reflex is integral to voluntary voiding while urine storage is dependent on lumbosacral spinal reflexes (27). The bladder microcirculation is uniquely adapted to maintain perfusion as the organ's size and wall thickness alter as it fills and empties, and to preferentially perfuse the detrusor muscle prior to bladder contraction. The structure of the pelvic floor is integral to continence; with incontinence in various forms a consequence of the effects of damage, structural weakness or organ prolapse. Urinary incontinence due to loss of pelvic floor integrity is a complex condition. With aging and the effects of illness and injury the normal supportive function of the pelvic floor muscles, ligaments and fascia becomes compromised. Progressive reduction or traumatic loss of soft tissue support results in pelvic organ prolapse (POP), which is a prevalent and debilitating disorder (25). POP is part of the spectrum of abnormalities occurring with pelvic floor dysfunction (35). POP is defined as abnormal symptomatic displacement of the pelvic organs from their normal anatomic position; herniation of some or all of the pelvic viscera occurs, including the urethra, bladder, vaginal vault, cervix, small bowel,","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160149","citationCount":"1","resultStr":"{\"title\":\"Integration of spectroscopy and imaging to optimize evaluation of voiding dysfunction\",\"authors\":\"L. Stothers, A. Macnab\",\"doi\":\"10.3233/BSI-160149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voiding dysfunction occurs due to the interplay of anatomic, physiologic and functional elements. Hence, integration of new imaging and spectroscopy modalities offers the potential for improving patient assessment by enabling the causal structural defects, formal staging of pelvic floor dysfunction and underlying physiologic mechanisms to be better defined. The purpose of this review is to outline the limitations of current imaging, and highlight the advantages of newer technologies in the evaluation of patients with voiding dysfunction due to loss of structural integrity of the pelvic floor. The everyday action of voiding belies the complex interplay of neural control of the voiding cycle, precise function of healthy organ systems and hemodynamic changes in the microcirculation required for the bladder to fill and empty normally. Brain mediated control initiates voluntary voiding, and integrity of the spinal cord is required to transmit neural signaling to the bladder. A spino-bulbo-spinal reflex is integral to voluntary voiding while urine storage is dependent on lumbosacral spinal reflexes (27). The bladder microcirculation is uniquely adapted to maintain perfusion as the organ's size and wall thickness alter as it fills and empties, and to preferentially perfuse the detrusor muscle prior to bladder contraction. The structure of the pelvic floor is integral to continence; with incontinence in various forms a consequence of the effects of damage, structural weakness or organ prolapse. Urinary incontinence due to loss of pelvic floor integrity is a complex condition. With aging and the effects of illness and injury the normal supportive function of the pelvic floor muscles, ligaments and fascia becomes compromised. Progressive reduction or traumatic loss of soft tissue support results in pelvic organ prolapse (POP), which is a prevalent and debilitating disorder (25). POP is part of the spectrum of abnormalities occurring with pelvic floor dysfunction (35). POP is defined as abnormal symptomatic displacement of the pelvic organs from their normal anatomic position; herniation of some or all of the pelvic viscera occurs, including the urethra, bladder, vaginal vault, cervix, small bowel,\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BSI-160149\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BSI-160149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-160149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 1

摘要

排尿功能障碍是解剖、生理和功能因素相互作用的结果。因此,新的成像和光谱学模式的整合,通过更好地定义骨盆底功能障碍的因果结构缺陷、正式分期和潜在的生理机制,提供了改善患者评估的潜力。本综述的目的是概述当前影像学的局限性,并强调新技术在评估盆底结构完整性丧失导致的排尿功能障碍患者中的优势。排尿的日常行为掩盖了排尿周期的神经控制、健康器官系统的精确功能和膀胱正常充血和排空所需的微循环血流动力学变化之间复杂的相互作用。脑介导的控制启动自愿排尿,脊髓的完整性需要将神经信号传递到膀胱。脊髓-球-脊髓反射是自然排尿不可或缺的一部分,而尿的储存则依赖于腰骶脊髓反射(27)。膀胱微循环独特地适应于维持灌注,因为器官的大小和壁厚随着填充和排空而改变,并在膀胱收缩之前优先灌注逼尿肌。骨盆底的结构是尿失禁的组成部分;各种形式的尿失禁是由于损伤、结构缺陷或器官脱垂造成的。盆底完整性丧失引起的尿失禁是一种复杂的疾病。随着年龄的增长以及疾病和损伤的影响,骨盆底肌肉、韧带和筋膜的正常支持功能受到损害。软组织支撑的逐渐减少或创伤性丧失会导致盆腔器官脱垂(POP),这是一种常见的衰弱性疾病(25)。POP是骨盆底功能障碍异常的一部分(35)。POP被定义为盆腔器官偏离其正常解剖位置的异常症状性移位;部分或全部盆腔脏器发生疝出,包括尿道、膀胱、阴道穹窿、子宫颈、小肠、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of spectroscopy and imaging to optimize evaluation of voiding dysfunction
Voiding dysfunction occurs due to the interplay of anatomic, physiologic and functional elements. Hence, integration of new imaging and spectroscopy modalities offers the potential for improving patient assessment by enabling the causal structural defects, formal staging of pelvic floor dysfunction and underlying physiologic mechanisms to be better defined. The purpose of this review is to outline the limitations of current imaging, and highlight the advantages of newer technologies in the evaluation of patients with voiding dysfunction due to loss of structural integrity of the pelvic floor. The everyday action of voiding belies the complex interplay of neural control of the voiding cycle, precise function of healthy organ systems and hemodynamic changes in the microcirculation required for the bladder to fill and empty normally. Brain mediated control initiates voluntary voiding, and integrity of the spinal cord is required to transmit neural signaling to the bladder. A spino-bulbo-spinal reflex is integral to voluntary voiding while urine storage is dependent on lumbosacral spinal reflexes (27). The bladder microcirculation is uniquely adapted to maintain perfusion as the organ's size and wall thickness alter as it fills and empties, and to preferentially perfuse the detrusor muscle prior to bladder contraction. The structure of the pelvic floor is integral to continence; with incontinence in various forms a consequence of the effects of damage, structural weakness or organ prolapse. Urinary incontinence due to loss of pelvic floor integrity is a complex condition. With aging and the effects of illness and injury the normal supportive function of the pelvic floor muscles, ligaments and fascia becomes compromised. Progressive reduction or traumatic loss of soft tissue support results in pelvic organ prolapse (POP), which is a prevalent and debilitating disorder (25). POP is part of the spectrum of abnormalities occurring with pelvic floor dysfunction (35). POP is defined as abnormal symptomatic displacement of the pelvic organs from their normal anatomic position; herniation of some or all of the pelvic viscera occurs, including the urethra, bladder, vaginal vault, cervix, small bowel,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
期刊最新文献
Covid-19 pandemic has been a set-back for scientific productivity and the road to recovery must focus on improving the mental health and well-being of scientists Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen A method to detect thermal damage in bovine liver utilising diffuse reflectance spectroscopy Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1