蛋白质微阵列的FTIR成像分析

IF 0.3 Q4 SPECTROSCOPY Biomedical Spectroscopy and Imaging Pub Date : 2016-01-01 DOI:10.3233/BSI-160137
J. D. Meutter, Kheiro-Mouna Derfoufi, E. Goormaghtigh
{"title":"蛋白质微阵列的FTIR成像分析","authors":"J. D. Meutter, Kheiro-Mouna Derfoufi, E. Goormaghtigh","doi":"10.3233/BSI-160137","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Proteins are sensitive to environmental conditions. Whether they are produced for therapeutic purposes or for fundamental research, the integrity of their structure and post-traductional modifications are key issues. Measuring glycosylation or phosphorylation level as well as their secondary structure most often rely on complex and indirect experiments. Infrared spectroscopy presents a series of advantages related to its multivariate character. There is a lack of high-throughput methods able to analyse these parameters. OBJECTIVE: In this paper we attempted to combine protein microarrays and infrared imaging for high throughput analysis of proteins. METHODS: A protein microarrayer was used to produce protein microarrays on BaF2 slides transparent in the mid-infrared. Spot density was about 25 spots/mm 2 . A 128 × 128 focal plane array infrared detector was used to record images of the protein microarrays. RESULTS: We show that 100 µm diameter spot are easily analyzed. Spots obtained with low protein concentrations, resulting in an average of a single protein monolayer (ca 3 fg/µm 2 for a 66 kDa protein) provided good quality spectra. CONCLUSIONS: Infrared imaging is a label free, high throughput method, able to analyse protein microarrays and to take advantage from the wide information available in the infrared spectra.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160137","citationCount":"14","resultStr":"{\"title\":\"Analysis of protein microarrays by FTIR imaging\",\"authors\":\"J. D. Meutter, Kheiro-Mouna Derfoufi, E. Goormaghtigh\",\"doi\":\"10.3233/BSI-160137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Proteins are sensitive to environmental conditions. Whether they are produced for therapeutic purposes or for fundamental research, the integrity of their structure and post-traductional modifications are key issues. Measuring glycosylation or phosphorylation level as well as their secondary structure most often rely on complex and indirect experiments. Infrared spectroscopy presents a series of advantages related to its multivariate character. There is a lack of high-throughput methods able to analyse these parameters. OBJECTIVE: In this paper we attempted to combine protein microarrays and infrared imaging for high throughput analysis of proteins. METHODS: A protein microarrayer was used to produce protein microarrays on BaF2 slides transparent in the mid-infrared. Spot density was about 25 spots/mm 2 . A 128 × 128 focal plane array infrared detector was used to record images of the protein microarrays. RESULTS: We show that 100 µm diameter spot are easily analyzed. Spots obtained with low protein concentrations, resulting in an average of a single protein monolayer (ca 3 fg/µm 2 for a 66 kDa protein) provided good quality spectra. CONCLUSIONS: Infrared imaging is a label free, high throughput method, able to analyse protein microarrays and to take advantage from the wide information available in the infrared spectra.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BSI-160137\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BSI-160137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-160137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 14

摘要

背景:蛋白质对环境条件很敏感。无论它们是用于治疗目的还是用于基础研究,其结构的完整性和后传统修饰都是关键问题。测量糖基化或磷酸化水平以及它们的二级结构通常依赖于复杂和间接的实验。红外光谱的多变量特性使其具有一系列的优势。目前还缺乏能够分析这些参数的高通量方法。目的:本文尝试将蛋白质微阵列技术与红外成像技术相结合,用于蛋白质的高通量分析。方法:采用蛋白质微阵列技术在中红外透明的BaF2载玻片上制备蛋白质微阵列。光斑密度约为25点/mm 2。使用128 × 128焦平面阵列红外探测器记录蛋白质微阵列图像。结果:100µm直径的斑点易于分析。低蛋白浓度下获得的斑点,产生平均单个蛋白单层(66 kDa蛋白约3 fg/µm 2),提供了高质量的光谱。结论:红外成像是一种无标签、高通量的方法,能够分析蛋白质微阵列,并利用红外光谱中的广泛信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of protein microarrays by FTIR imaging
BACKGROUND: Proteins are sensitive to environmental conditions. Whether they are produced for therapeutic purposes or for fundamental research, the integrity of their structure and post-traductional modifications are key issues. Measuring glycosylation or phosphorylation level as well as their secondary structure most often rely on complex and indirect experiments. Infrared spectroscopy presents a series of advantages related to its multivariate character. There is a lack of high-throughput methods able to analyse these parameters. OBJECTIVE: In this paper we attempted to combine protein microarrays and infrared imaging for high throughput analysis of proteins. METHODS: A protein microarrayer was used to produce protein microarrays on BaF2 slides transparent in the mid-infrared. Spot density was about 25 spots/mm 2 . A 128 × 128 focal plane array infrared detector was used to record images of the protein microarrays. RESULTS: We show that 100 µm diameter spot are easily analyzed. Spots obtained with low protein concentrations, resulting in an average of a single protein monolayer (ca 3 fg/µm 2 for a 66 kDa protein) provided good quality spectra. CONCLUSIONS: Infrared imaging is a label free, high throughput method, able to analyse protein microarrays and to take advantage from the wide information available in the infrared spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
期刊最新文献
Covid-19 pandemic has been a set-back for scientific productivity and the road to recovery must focus on improving the mental health and well-being of scientists Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen A method to detect thermal damage in bovine liver utilising diffuse reflectance spectroscopy Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1