红外光谱作为研究单个活细胞的新工具:是否有一席之地?

IF 0.3 Q4 SPECTROSCOPY Biomedical Spectroscopy and Imaging Pub Date : 2017-01-01 DOI:10.3233/BSI-170171
S. Sabbatini, C. Conti, G. Orilisi, E. Giorgini
{"title":"红外光谱作为研究单个活细胞的新工具:是否有一席之地?","authors":"S. Sabbatini, C. Conti, G. Orilisi, E. Giorgini","doi":"10.3233/BSI-170171","DOIUrl":null,"url":null,"abstract":"FTIR spectroscopy is an analytical technique widely applied for studying the vibrational fingerprint of organic compounds. In recent years, it has been applied to many biomedical fields because of its potential to detect the composition and molecular structure of various biological materials without the need of probe molecules. The coupling of IR spectrometers with visible microscopes has led to perform the imaging analysis of non-homogeneous samples, such as tissues and cells, in which the biochemical and spatial information are close related. In this review, we report the most significant applications of FTIR to the study of cells in different conditions (fixed, dried and living) with the aim to monitor their biochemical modifications, either induced or naturally occurring.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1","pages":"85-99"},"PeriodicalIF":0.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-170171","citationCount":"39","resultStr":"{\"title\":\"Infrared spectroscopy as a new tool for studying single living cells: Is there a niche?\",\"authors\":\"S. Sabbatini, C. Conti, G. Orilisi, E. Giorgini\",\"doi\":\"10.3233/BSI-170171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FTIR spectroscopy is an analytical technique widely applied for studying the vibrational fingerprint of organic compounds. In recent years, it has been applied to many biomedical fields because of its potential to detect the composition and molecular structure of various biological materials without the need of probe molecules. The coupling of IR spectrometers with visible microscopes has led to perform the imaging analysis of non-homogeneous samples, such as tissues and cells, in which the biochemical and spatial information are close related. In this review, we report the most significant applications of FTIR to the study of cells in different conditions (fixed, dried and living) with the aim to monitor their biochemical modifications, either induced or naturally occurring.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":\"6 1\",\"pages\":\"85-99\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BSI-170171\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BSI-170171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-170171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 39

摘要

FTIR光谱是一种广泛应用于有机化合物振动指纹图谱研究的分析技术。近年来,由于其无需探针分子即可检测各种生物材料的组成和分子结构的潜力,已被应用于许多生物医学领域。红外光谱仪与可见显微镜的耦合使得对非均匀样品(如组织和细胞)进行成像分析,其中生化和空间信息密切相关。在这篇综述中,我们报告了FTIR在不同条件下(固定、干燥和活)细胞研究中的最重要应用,目的是监测它们的生化修饰,无论是诱导的还是自然发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrared spectroscopy as a new tool for studying single living cells: Is there a niche?
FTIR spectroscopy is an analytical technique widely applied for studying the vibrational fingerprint of organic compounds. In recent years, it has been applied to many biomedical fields because of its potential to detect the composition and molecular structure of various biological materials without the need of probe molecules. The coupling of IR spectrometers with visible microscopes has led to perform the imaging analysis of non-homogeneous samples, such as tissues and cells, in which the biochemical and spatial information are close related. In this review, we report the most significant applications of FTIR to the study of cells in different conditions (fixed, dried and living) with the aim to monitor their biochemical modifications, either induced or naturally occurring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
期刊最新文献
Covid-19 pandemic has been a set-back for scientific productivity and the road to recovery must focus on improving the mental health and well-being of scientists Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen A method to detect thermal damage in bovine liver utilising diffuse reflectance spectroscopy Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1