{"title":"铸造缺陷的谱域实例分割模型","authors":"Jinhua Lin, Lin Ma, Yu Yao","doi":"10.3233/ica-210666","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of casting defects plays a positive role in the quality control of casting products, and is of great significance for accurate extraction of the mechanical properties of defects in the casting solidification process. However, as the shape of casting defects is complex and irregular, it is challenging to segment casting defects by existing segmentation methods. To address this, a spectrum domain instance segmentation model (SISN) is proposed for segmenting five types of casting defects with complex shapes accurately. The five defects are inclusion, shrinkage, hot tearing, cold tearing and micro pore. The proposed model consists of three sub-models: the spectrum domain region proposal model (SRPN), spectrum domain region of interest alignment model (SRoIAlign) and spectrum domain instance generation model (SIGN). SRPN uses a multi-scale anchoring mechanism to detect defects of various sizes, where the SSReLU and SCPool functions are used to solve the spectrum domain gradient explosion problem and the spectrum domain over-fitting problem. SRoIAlign uses the floating-point quantization operation and the tri-linear interpolation method to quantize the 3D proposals to the feature values in an accurate manner. SIGN is a full-spectrum domain neural network applied to 3D proposals, generating a segmentation instance of defects in a point-wise manner. In the experiments, we test the effectiveness of the proposed model from three aspects: segmentation accuracy, time performance and mechanical property extraction accuracy.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"29 1","pages":"63-82"},"PeriodicalIF":5.8000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A spectrum-domain instance segmentation model for casting defects\",\"authors\":\"Jinhua Lin, Lin Ma, Yu Yao\",\"doi\":\"10.3233/ica-210666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of casting defects plays a positive role in the quality control of casting products, and is of great significance for accurate extraction of the mechanical properties of defects in the casting solidification process. However, as the shape of casting defects is complex and irregular, it is challenging to segment casting defects by existing segmentation methods. To address this, a spectrum domain instance segmentation model (SISN) is proposed for segmenting five types of casting defects with complex shapes accurately. The five defects are inclusion, shrinkage, hot tearing, cold tearing and micro pore. The proposed model consists of three sub-models: the spectrum domain region proposal model (SRPN), spectrum domain region of interest alignment model (SRoIAlign) and spectrum domain instance generation model (SIGN). SRPN uses a multi-scale anchoring mechanism to detect defects of various sizes, where the SSReLU and SCPool functions are used to solve the spectrum domain gradient explosion problem and the spectrum domain over-fitting problem. SRoIAlign uses the floating-point quantization operation and the tri-linear interpolation method to quantize the 3D proposals to the feature values in an accurate manner. SIGN is a full-spectrum domain neural network applied to 3D proposals, generating a segmentation instance of defects in a point-wise manner. In the experiments, we test the effectiveness of the proposed model from three aspects: segmentation accuracy, time performance and mechanical property extraction accuracy.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"29 1\",\"pages\":\"63-82\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-210666\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-210666","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A spectrum-domain instance segmentation model for casting defects
Accurate segmentation of casting defects plays a positive role in the quality control of casting products, and is of great significance for accurate extraction of the mechanical properties of defects in the casting solidification process. However, as the shape of casting defects is complex and irregular, it is challenging to segment casting defects by existing segmentation methods. To address this, a spectrum domain instance segmentation model (SISN) is proposed for segmenting five types of casting defects with complex shapes accurately. The five defects are inclusion, shrinkage, hot tearing, cold tearing and micro pore. The proposed model consists of three sub-models: the spectrum domain region proposal model (SRPN), spectrum domain region of interest alignment model (SRoIAlign) and spectrum domain instance generation model (SIGN). SRPN uses a multi-scale anchoring mechanism to detect defects of various sizes, where the SSReLU and SCPool functions are used to solve the spectrum domain gradient explosion problem and the spectrum domain over-fitting problem. SRoIAlign uses the floating-point quantization operation and the tri-linear interpolation method to quantize the 3D proposals to the feature values in an accurate manner. SIGN is a full-spectrum domain neural network applied to 3D proposals, generating a segmentation instance of defects in a point-wise manner. In the experiments, we test the effectiveness of the proposed model from three aspects: segmentation accuracy, time performance and mechanical property extraction accuracy.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.