空间激光通信终端APT系统光路指向误差及同轴度分析

IF 0.7 4区 物理与天体物理 Q4 OPTICS Optica Applicata Pub Date : 2021-01-01 DOI:10.37190/oa210205
Zhang Furui, Ruan Ping, Han Junfeng
{"title":"空间激光通信终端APT系统光路指向误差及同轴度分析","authors":"Zhang Furui, Ruan Ping, Han Junfeng","doi":"10.37190/oa210205","DOIUrl":null,"url":null,"abstract":"Precision beam pointing is the key indicator for APT (acquisition, pointing and tracking) system in space laser communication. The laser travels inside the optical system and the pointing vector will be affected by an assembly error of the axis and reflectors. In this paper, the model of the optical path pointing error and coaxiality error induced by the assembly error are established; the error distribution is given and a quantitative analysis is performed. The results show that the magnitude of pointing error is affected by the axis assembling error greatly but its distribution is susceptible to the reflector assembly error. Finally, the correction of coaxiality is performed and tested. The experimental results show that the coaxiality error can be greatly improved and the mean value of the coaxiality error of a beacon path and a signal path are 14 and 9.6 μrad, respectively, which meets the requirements. This work can provide guidance for design and assembly of the APT and contribute to the improvement of its pointing performance.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical path pointing error and coaxiality analysis of APT system of space laser communication terminal\",\"authors\":\"Zhang Furui, Ruan Ping, Han Junfeng\",\"doi\":\"10.37190/oa210205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision beam pointing is the key indicator for APT (acquisition, pointing and tracking) system in space laser communication. The laser travels inside the optical system and the pointing vector will be affected by an assembly error of the axis and reflectors. In this paper, the model of the optical path pointing error and coaxiality error induced by the assembly error are established; the error distribution is given and a quantitative analysis is performed. The results show that the magnitude of pointing error is affected by the axis assembling error greatly but its distribution is susceptible to the reflector assembly error. Finally, the correction of coaxiality is performed and tested. The experimental results show that the coaxiality error can be greatly improved and the mean value of the coaxiality error of a beacon path and a signal path are 14 and 9.6 μrad, respectively, which meets the requirements. This work can provide guidance for design and assembly of the APT and contribute to the improvement of its pointing performance.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa210205\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa210205","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

精确波束指向是空间激光通信中APT(获取、指向和跟踪)系统的关键指标。激光在光学系统内部传播,其指向矢量会受到轴和反射镜的装配误差的影响。建立了由装配误差引起的光路指向误差和同轴度误差的模型;给出了误差分布,并进行了定量分析。结果表明,指向误差的大小受轴装配误差的影响较大,但其分布受反射面装配误差的影响较大。最后,对同轴度进行了校正并进行了测试。实验结果表明,该方法可以大大改善信标路径和信号路径的同轴度误差,其平均值分别为14 μrad和9.6 μrad,满足要求。该工作可为APT的设计和装配提供指导,并有助于提高其指向性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical path pointing error and coaxiality analysis of APT system of space laser communication terminal
Precision beam pointing is the key indicator for APT (acquisition, pointing and tracking) system in space laser communication. The laser travels inside the optical system and the pointing vector will be affected by an assembly error of the axis and reflectors. In this paper, the model of the optical path pointing error and coaxiality error induced by the assembly error are established; the error distribution is given and a quantitative analysis is performed. The results show that the magnitude of pointing error is affected by the axis assembling error greatly but its distribution is susceptible to the reflector assembly error. Finally, the correction of coaxiality is performed and tested. The experimental results show that the coaxiality error can be greatly improved and the mean value of the coaxiality error of a beacon path and a signal path are 14 and 9.6 μrad, respectively, which meets the requirements. This work can provide guidance for design and assembly of the APT and contribute to the improvement of its pointing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
期刊最新文献
The influence of solvents on the appearance of the absorption bands of the polystyrene films deposited from solutions on metal mirrors In-fiber Mach–Zehnder interferometer based on polarization-maintaining fiber for displacement and temperature sensing Average capacity analysis of FSO system with Airy beam as carrier over exponentiated Weibull channels Infrared and visible image fusion with deep wavelet-dense network Manipulating far-field ring-shaped array according to the superposition of weight functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1