基于后置相位掩模和随机分解的图像加密算法

IF 0.7 4区 物理与天体物理 Q4 OPTICS Optica Applicata Pub Date : 2022-01-01 DOI:10.37190/oa220204
S. Yadav, H. Singh
{"title":"基于后置相位掩模和随机分解的图像加密算法","authors":"S. Yadav, H. Singh","doi":"10.37190/oa220204","DOIUrl":null,"url":null,"abstract":"To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image encryption algorithm based on rear-mountedphase mask and random decomposition\",\"authors\":\"S. Yadav, H. Singh\",\"doi\":\"10.37190/oa220204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa220204\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220204","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

为了提高图像加密的强度,提出了一种基于后相位掩蔽的双随机相位编码(DRPE)和基于分数阶傅里叶变换的随机分解技术。本文采用分数阶傅立叶变换(FrFT)模式,采用两个随机相位掩模(RPM)和一个后置相位掩模来开发非对称密码系统。在投影方案中,彩色图像被分解为R、G和B通道。每个通道的幅度归一化,相位编码和调制使用RPM。对彩色图像的调制后的R、G、B通道分别进行FrFT变换,得到相应的加密图像。该方案也适用于灰度图像。通过对基于RD的系统进行密码分析,阐述了该方案发展背后的规范。该方法通过累积密钥长度和参数数量,有助于对双随机相位编码的保护升级,从而有力地抵御各种攻击。利用MATLAB 7.9.0 (R2008a)进行仿真,验证了所建议密码系统的安全性。该方案的有效性体现在奇异值分解(SVD)、直方图和相关系数分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image encryption algorithm based on rear-mountedphase mask and random decomposition
To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
期刊最新文献
The influence of solvents on the appearance of the absorption bands of the polystyrene films deposited from solutions on metal mirrors In-fiber Mach–Zehnder interferometer based on polarization-maintaining fiber for displacement and temperature sensing Average capacity analysis of FSO system with Airy beam as carrier over exponentiated Weibull channels Infrared and visible image fusion with deep wavelet-dense network Manipulating far-field ring-shaped array according to the superposition of weight functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1