{"title":"利用数字光处理器的空间光调制器设计和结构电磁波的产生","authors":"F. Yalcinkaya, T. Koc, Z. Pala","doi":"10.37190/oa220311","DOIUrl":null,"url":null,"abstract":"Spatial light modulators (SLMs) are versatile devices used for optical studies. These instruments have a wide area of application in photonics. Additionally, SLMs have potential utility in different applications, such as biomedical applications, laser based surgery for precise cutting and as optical tweezers to separate cells in a petri container. However, the high cost of SLM devices prevents their widespread use in many areas, including industrial areas and scientific research laboratories. This paper demonstrates how to design a digital light processor (DLP) based low-cost SLM and describes how to obtain structured electromagnetic waves with the designed SLM. Therefore, this research was undertaken to design and produce a low-cost SLM device for optical applications. For this purpose, two prerequisites had to be fulfilled, the first was to use suitable components of a projection device with DLP-based digital micro-mirror device (DMD), and the second was to eliminate unnecessary SLM components from the system. Finally, holographic images reflected on the SLM screen were created by using Mathematica software program to change the amplitude and phase of the electromagnetic waves in order to obtain the structured electromagnetic waves.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial light modulator design and generation of structured electromagnetic waves using digital light processors\",\"authors\":\"F. Yalcinkaya, T. Koc, Z. Pala\",\"doi\":\"10.37190/oa220311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial light modulators (SLMs) are versatile devices used for optical studies. These instruments have a wide area of application in photonics. Additionally, SLMs have potential utility in different applications, such as biomedical applications, laser based surgery for precise cutting and as optical tweezers to separate cells in a petri container. However, the high cost of SLM devices prevents their widespread use in many areas, including industrial areas and scientific research laboratories. This paper demonstrates how to design a digital light processor (DLP) based low-cost SLM and describes how to obtain structured electromagnetic waves with the designed SLM. Therefore, this research was undertaken to design and produce a low-cost SLM device for optical applications. For this purpose, two prerequisites had to be fulfilled, the first was to use suitable components of a projection device with DLP-based digital micro-mirror device (DMD), and the second was to eliminate unnecessary SLM components from the system. Finally, holographic images reflected on the SLM screen were created by using Mathematica software program to change the amplitude and phase of the electromagnetic waves in order to obtain the structured electromagnetic waves.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa220311\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220311","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Spatial light modulator design and generation of structured electromagnetic waves using digital light processors
Spatial light modulators (SLMs) are versatile devices used for optical studies. These instruments have a wide area of application in photonics. Additionally, SLMs have potential utility in different applications, such as biomedical applications, laser based surgery for precise cutting and as optical tweezers to separate cells in a petri container. However, the high cost of SLM devices prevents their widespread use in many areas, including industrial areas and scientific research laboratories. This paper demonstrates how to design a digital light processor (DLP) based low-cost SLM and describes how to obtain structured electromagnetic waves with the designed SLM. Therefore, this research was undertaken to design and produce a low-cost SLM device for optical applications. For this purpose, two prerequisites had to be fulfilled, the first was to use suitable components of a projection device with DLP-based digital micro-mirror device (DMD), and the second was to eliminate unnecessary SLM components from the system. Finally, holographic images reflected on the SLM screen were created by using Mathematica software program to change the amplitude and phase of the electromagnetic waves in order to obtain the structured electromagnetic waves.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.