Yong Tang, Hao Zhang, Li Zhang, Xin Feng Yu, Yun Feng Bai
{"title":"基于固定波长传输的锥形长周期光纤光栅应变测量","authors":"Yong Tang, Hao Zhang, Li Zhang, Xin Feng Yu, Yun Feng Bai","doi":"10.37190/oa220403","DOIUrl":null,"url":null,"abstract":"This paper studies the relationship between transmission intensity and strain based on tapered long-period fiber grating at a fixed wavelength. In experiments, tapered long-period fiber grating was prepared by the electric melting method. Experimental results show that two resonance peaks appeared at 1482 and 1537 nm, respectively. Here is the elaboration of the relationship between the resonant wavelength and the strain, its wavelength-strain sensitivity is 20 pm/με, and the linearity was negative. Then our next study was about the relationship between transmission intensity and strain at a fixed wavelength. The results show that the transmission intensity at a fixed wavelength is related to the exponent with strain. The coupled-mode theory is applied to simulate the relationship between fixed wavelength and strain. The simulation results matched the experimental results. Two fixed wavelength transmission intensity ratio was used, and the ratio showed a linear relationship with the strain, and the slope is –0.018 dB/με. Therefore, within the 0.01% resolution of our detector, we could resolve a 0.16 με strain change. We can select the appropriate light source and detector to achieve higher measurement accuracy. Thus, there is a great potential in fiber grating strain sensors.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strain measurement based on fixed wavelength transmission of tapered long-period fiber grating\",\"authors\":\"Yong Tang, Hao Zhang, Li Zhang, Xin Feng Yu, Yun Feng Bai\",\"doi\":\"10.37190/oa220403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the relationship between transmission intensity and strain based on tapered long-period fiber grating at a fixed wavelength. In experiments, tapered long-period fiber grating was prepared by the electric melting method. Experimental results show that two resonance peaks appeared at 1482 and 1537 nm, respectively. Here is the elaboration of the relationship between the resonant wavelength and the strain, its wavelength-strain sensitivity is 20 pm/με, and the linearity was negative. Then our next study was about the relationship between transmission intensity and strain at a fixed wavelength. The results show that the transmission intensity at a fixed wavelength is related to the exponent with strain. The coupled-mode theory is applied to simulate the relationship between fixed wavelength and strain. The simulation results matched the experimental results. Two fixed wavelength transmission intensity ratio was used, and the ratio showed a linear relationship with the strain, and the slope is –0.018 dB/με. Therefore, within the 0.01% resolution of our detector, we could resolve a 0.16 με strain change. We can select the appropriate light source and detector to achieve higher measurement accuracy. Thus, there is a great potential in fiber grating strain sensors.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa220403\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220403","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Strain measurement based on fixed wavelength transmission of tapered long-period fiber grating
This paper studies the relationship between transmission intensity and strain based on tapered long-period fiber grating at a fixed wavelength. In experiments, tapered long-period fiber grating was prepared by the electric melting method. Experimental results show that two resonance peaks appeared at 1482 and 1537 nm, respectively. Here is the elaboration of the relationship between the resonant wavelength and the strain, its wavelength-strain sensitivity is 20 pm/με, and the linearity was negative. Then our next study was about the relationship between transmission intensity and strain at a fixed wavelength. The results show that the transmission intensity at a fixed wavelength is related to the exponent with strain. The coupled-mode theory is applied to simulate the relationship between fixed wavelength and strain. The simulation results matched the experimental results. Two fixed wavelength transmission intensity ratio was used, and the ratio showed a linear relationship with the strain, and the slope is –0.018 dB/με. Therefore, within the 0.01% resolution of our detector, we could resolve a 0.16 με strain change. We can select the appropriate light source and detector to achieve higher measurement accuracy. Thus, there is a great potential in fiber grating strain sensors.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.