Chaoqun Yu, Fuchang Chen, Jun Zeng, Cheng Huang, Zhimin He, Huichuan Lin, Yongtao Zhang, Ziyang Chen, Jixiong Pu
{"title":"聚焦圆形部分相干光束对瑞利粒子的光俘获力","authors":"Chaoqun Yu, Fuchang Chen, Jun Zeng, Cheng Huang, Zhimin He, Huichuan Lin, Yongtao Zhang, Ziyang Chen, Jixiong Pu","doi":"10.37190/oa220408","DOIUrl":null,"url":null,"abstract":"The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical trapping forces of focused circular partially coherent beams on Rayleigh particles\",\"authors\":\"Chaoqun Yu, Fuchang Chen, Jun Zeng, Cheng Huang, Zhimin He, Huichuan Lin, Yongtao Zhang, Ziyang Chen, Jixiong Pu\",\"doi\":\"10.37190/oa220408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa220408\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220408","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Optical trapping forces of focused circular partially coherent beams on Rayleigh particles
The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.