可能性灰色预测与神经网络模糊回归的比较实证研究

IF 1 4区 工程技术 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Grey System Pub Date : 2005-12-01 DOI:10.30016/JGS.200512.0001
Hsiao-Chi Chen, Yi-Chung Hu, J. Z. Shyu, G. Tzeng
{"title":"可能性灰色预测与神经网络模糊回归的比较实证研究","authors":"Hsiao-Chi Chen, Yi-Chung Hu, J. Z. Shyu, G. Tzeng","doi":"10.30016/JGS.200512.0001","DOIUrl":null,"url":null,"abstract":"Causality and time series model are the most effective methods used in forecasting practices. Time series models, such as ARIMA, are used by most researchers in stock price prediction. However, in the financial environment, the information on the stock market is vague. To solve this problem, this work presents two forecasting models to help investors make decisions in stock market: one is a new model named possibility grey forecasting model, and the other is the neural network-based fuzzy regression. Moreover, the differences between them and the scenarios for implementing them are also analyzed in this paper to help investors to plan their own investment strategies under various conditions. In the empirical study, we demonstrate that the proposed method and the neural network-based fuzzy regression can be used to effectively find the stock index in Taiwan.","PeriodicalId":50187,"journal":{"name":"Journal of Grey System","volume":"8 1","pages":"93-106"},"PeriodicalIF":1.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing Possibility Grey Forecasting with Neural network-based Fuzzy Regression by an Empirical Study\",\"authors\":\"Hsiao-Chi Chen, Yi-Chung Hu, J. Z. Shyu, G. Tzeng\",\"doi\":\"10.30016/JGS.200512.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causality and time series model are the most effective methods used in forecasting practices. Time series models, such as ARIMA, are used by most researchers in stock price prediction. However, in the financial environment, the information on the stock market is vague. To solve this problem, this work presents two forecasting models to help investors make decisions in stock market: one is a new model named possibility grey forecasting model, and the other is the neural network-based fuzzy regression. Moreover, the differences between them and the scenarios for implementing them are also analyzed in this paper to help investors to plan their own investment strategies under various conditions. In the empirical study, we demonstrate that the proposed method and the neural network-based fuzzy regression can be used to effectively find the stock index in Taiwan.\",\"PeriodicalId\":50187,\"journal\":{\"name\":\"Journal of Grey System\",\"volume\":\"8 1\",\"pages\":\"93-106\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grey System\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30016/JGS.200512.0001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grey System","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30016/JGS.200512.0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

因果关系模型和时间序列模型是预测实践中最有效的方法。时间序列模型,如ARIMA,被大多数研究人员用于股票价格预测。然而,在金融环境下,股票市场的信息是模糊的。为了解决这一问题,本文提出了两种预测模型,一种是可能性灰色预测模型,另一种是基于神经网络的模糊回归模型。此外,本文还分析了它们之间的区别以及它们的实施场景,以帮助投资者在各种情况下规划自己的投资策略。实证研究表明,本文所提出的方法与基于神经网路的模糊回归可以有效地找出台湾的股票指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Possibility Grey Forecasting with Neural network-based Fuzzy Regression by an Empirical Study
Causality and time series model are the most effective methods used in forecasting practices. Time series models, such as ARIMA, are used by most researchers in stock price prediction. However, in the financial environment, the information on the stock market is vague. To solve this problem, this work presents two forecasting models to help investors make decisions in stock market: one is a new model named possibility grey forecasting model, and the other is the neural network-based fuzzy regression. Moreover, the differences between them and the scenarios for implementing them are also analyzed in this paper to help investors to plan their own investment strategies under various conditions. In the empirical study, we demonstrate that the proposed method and the neural network-based fuzzy regression can be used to effectively find the stock index in Taiwan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Grey System
Journal of Grey System 数学-数学跨学科应用
CiteScore
2.40
自引率
43.80%
发文量
0
审稿时长
1.5 months
期刊介绍: The journal is a forum of the highest professional quality for both scientists and practitioners to exchange ideas and publish new discoveries on a vast array of topics and issues in grey system. It aims to bring forth anything from either innovative to known theories or practical applications in grey system. It provides everyone opportunities to present, criticize, and discuss their findings and ideas with others. A number of areas of particular interest (but not limited) are listed as follows: Grey mathematics- Generator of Grey Sequences- Grey Incidence Analysis Models- Grey Clustering Evaluation Models- Grey Prediction Models- Grey Decision Making Models- Grey Programming Models- Grey Input and Output Models- Grey Control- Grey Game- Practical Applications.
期刊最新文献
A Study of Using Analytical Hierarchy Process and Grey Relational Grade in Wine Evaluation Selection of Discrete GM Model Initial Value by Designing Calculation Program Clustering the English Reading Performances by Using GSP And GSM The Prices Prediction of Taiwan Stock via GM(1,1) Method Apply Differences Grey Prediction Methods in the Selling of LOHAS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1