Kuo-Chen Hung, Fu-Yuan Hsu, Kuo-Jung Wu, Kun-Li Wen, John H. Wu
{"title":"误差项μ(k)的改进GM(1,1)灰色预测方法","authors":"Kuo-Chen Hung, Fu-Yuan Hsu, Kuo-Jung Wu, Kun-Li Wen, John H. Wu","doi":"10.30016/JGS.200709.0001","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to improve the GM(1,1) predictive model that has been originally developed by Deng in 1982. It is a non-statistic prediction model with very few original data, there has been applied in different fields. However, from the original grey predictive model, we find two problems, (1) applying the GM(1,1) model to predict maybe obtained the result of decreasing trend, this result violate hypothesis of exponential increase trend, (2) the first point of original data is different with 1st point of predictive value that both exist an error term. Therefore, we improved the problem of decreasing trend and provide a newly modified model. Moreover, we proposed an enhanced GM(1,1) grey prediction approach that adopted modified error terms for each original data point mapping into each predictive point to fit the actual value. Meanwhile, in this paper, we applying this enhanced model to predict electricity demand, and comparison with Deng's prediction model, the analyzed results demonstrate the usefulness of this study.","PeriodicalId":50187,"journal":{"name":"Journal of Grey System","volume":"10 1","pages":"59-68"},"PeriodicalIF":1.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Enhanced GM(1,1) Grey Prediction Approach with Error Term μ(k)\",\"authors\":\"Kuo-Chen Hung, Fu-Yuan Hsu, Kuo-Jung Wu, Kun-Li Wen, John H. Wu\",\"doi\":\"10.30016/JGS.200709.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to improve the GM(1,1) predictive model that has been originally developed by Deng in 1982. It is a non-statistic prediction model with very few original data, there has been applied in different fields. However, from the original grey predictive model, we find two problems, (1) applying the GM(1,1) model to predict maybe obtained the result of decreasing trend, this result violate hypothesis of exponential increase trend, (2) the first point of original data is different with 1st point of predictive value that both exist an error term. Therefore, we improved the problem of decreasing trend and provide a newly modified model. Moreover, we proposed an enhanced GM(1,1) grey prediction approach that adopted modified error terms for each original data point mapping into each predictive point to fit the actual value. Meanwhile, in this paper, we applying this enhanced model to predict electricity demand, and comparison with Deng's prediction model, the analyzed results demonstrate the usefulness of this study.\",\"PeriodicalId\":50187,\"journal\":{\"name\":\"Journal of Grey System\",\"volume\":\"10 1\",\"pages\":\"59-68\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grey System\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30016/JGS.200709.0001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grey System","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30016/JGS.200709.0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Enhanced GM(1,1) Grey Prediction Approach with Error Term μ(k)
The aim of this paper is to improve the GM(1,1) predictive model that has been originally developed by Deng in 1982. It is a non-statistic prediction model with very few original data, there has been applied in different fields. However, from the original grey predictive model, we find two problems, (1) applying the GM(1,1) model to predict maybe obtained the result of decreasing trend, this result violate hypothesis of exponential increase trend, (2) the first point of original data is different with 1st point of predictive value that both exist an error term. Therefore, we improved the problem of decreasing trend and provide a newly modified model. Moreover, we proposed an enhanced GM(1,1) grey prediction approach that adopted modified error terms for each original data point mapping into each predictive point to fit the actual value. Meanwhile, in this paper, we applying this enhanced model to predict electricity demand, and comparison with Deng's prediction model, the analyzed results demonstrate the usefulness of this study.
期刊介绍:
The journal is a forum of the highest professional quality for both scientists and practitioners to exchange ideas and publish new discoveries on a vast array of topics and issues in grey system. It aims to bring forth anything from either innovative to known theories or practical applications in grey system. It provides everyone opportunities to present, criticize, and discuss their findings and ideas with others. A number of areas of particular interest (but not limited) are listed as follows:
Grey mathematics-
Generator of Grey Sequences-
Grey Incidence Analysis Models-
Grey Clustering Evaluation Models-
Grey Prediction Models-
Grey Decision Making Models-
Grey Programming Models-
Grey Input and Output Models-
Grey Control-
Grey Game-
Practical Applications.