{"title":"飞轮集成同步电容器对电网的惯性补偿","authors":"Parveen Tania, Sanjari Mohammad J., Arace Luke","doi":"10.3934/energy.2023021","DOIUrl":null,"url":null,"abstract":"This paper studies the integration of flywheel energy storage system (FESS) to a synchronous condenser (SC) and its effect on the stability margin of the power system. To show the applicability of FESS-integrated SC in mitigating sudden power loss and sudden load implementation, the experimental and simulation results are presented.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertia compensation of power grid with flywheel-integrated synchronous condenser\",\"authors\":\"Parveen Tania, Sanjari Mohammad J., Arace Luke\",\"doi\":\"10.3934/energy.2023021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the integration of flywheel energy storage system (FESS) to a synchronous condenser (SC) and its effect on the stability margin of the power system. To show the applicability of FESS-integrated SC in mitigating sudden power loss and sudden load implementation, the experimental and simulation results are presented.\",\"PeriodicalId\":45696,\"journal\":{\"name\":\"AIMS Energy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/energy.2023021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Inertia compensation of power grid with flywheel-integrated synchronous condenser
This paper studies the integration of flywheel energy storage system (FESS) to a synchronous condenser (SC) and its effect on the stability margin of the power system. To show the applicability of FESS-integrated SC in mitigating sudden power loss and sudden load implementation, the experimental and simulation results are presented.
期刊介绍:
AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy