始发-目的地数据:原型和相关场景

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2021-06-22 DOI:10.5335/rbca.v13i2.12351
Yussef Parcianello, N. P. Kozievitch, K. Fonseca, M. Rosa
{"title":"始发-目的地数据:原型和相关场景","authors":"Yussef Parcianello, N. P. Kozievitch, K. Fonseca, M. Rosa","doi":"10.5335/rbca.v13i2.12351","DOIUrl":null,"url":null,"abstract":"The Public Transportation System and its operation management require the processing of large amount of data (like bus routes, user data and bus schedules). In particular, origin-destination data serves to indicate citizens’ travel patterns, providing insights related to the dynamic of the urban space occupation. Given this scenario, this paper presents a prototype of origin-destination data visualization, maintaining the spatial and temporal context. The novelty relies on visualization through clustering of georreferenced data, allowing the analysis of different regions of interests (neighborhood, regionals or mathematical regions using K-means algorithm). We demonstrate the prototype through several scenarios, and interviews done to local citizens.Challenges related to meaningful presentation of results are discussed under the perspective of visualization and analytics.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Origin-Destination Data: a prototype and related scenarios\",\"authors\":\"Yussef Parcianello, N. P. Kozievitch, K. Fonseca, M. Rosa\",\"doi\":\"10.5335/rbca.v13i2.12351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Public Transportation System and its operation management require the processing of large amount of data (like bus routes, user data and bus schedules). In particular, origin-destination data serves to indicate citizens’ travel patterns, providing insights related to the dynamic of the urban space occupation. Given this scenario, this paper presents a prototype of origin-destination data visualization, maintaining the spatial and temporal context. The novelty relies on visualization through clustering of georreferenced data, allowing the analysis of different regions of interests (neighborhood, regionals or mathematical regions using K-means algorithm). We demonstrate the prototype through several scenarios, and interviews done to local citizens.Challenges related to meaningful presentation of results are discussed under the perspective of visualization and analytics.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v13i2.12351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v13i2.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

公共交通系统及其运行管理需要处理大量的数据(如公交路线、用户数据和公交时刻表)。特别是,始发目的地数据有助于表明公民的旅行模式,提供与城市空间占用动态有关的见解。在这种情况下,本文提出了一种保持时空背景的始发目的地数据可视化原型。这种新颖性依赖于地理参考数据聚类的可视化,允许分析不同的兴趣区域(邻域、区域或使用K-means算法的数学区域)。我们通过几个场景和对当地居民的采访来展示原型。在可视化和分析的角度下讨论了与有意义的结果呈现相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Origin-Destination Data: a prototype and related scenarios
The Public Transportation System and its operation management require the processing of large amount of data (like bus routes, user data and bus schedules). In particular, origin-destination data serves to indicate citizens’ travel patterns, providing insights related to the dynamic of the urban space occupation. Given this scenario, this paper presents a prototype of origin-destination data visualization, maintaining the spatial and temporal context. The novelty relies on visualization through clustering of georreferenced data, allowing the analysis of different regions of interests (neighborhood, regionals or mathematical regions using K-means algorithm). We demonstrate the prototype through several scenarios, and interviews done to local citizens.Challenges related to meaningful presentation of results are discussed under the perspective of visualization and analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1