{"title":"使用实数编码遗传算法的无约束数值优化:从头开始在R中使用基准函数的研究案例","authors":"O. A. Carmona Cortes, J. C. D. Silva","doi":"10.5335/rbca.v11i3.9047","DOIUrl":null,"url":null,"abstract":"Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5335/rbca.v11i3.9047","citationCount":"4","resultStr":"{\"title\":\"Unconstrained numerical optimization using real-coded genetic algorithms: a study case using benchmark functions in R from Scratch\",\"authors\":\"O. A. Carmona Cortes, J. C. D. Silva\",\"doi\":\"10.5335/rbca.v11i3.9047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5335/rbca.v11i3.9047\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v11i3.9047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v11i3.9047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Unconstrained numerical optimization using real-coded genetic algorithms: a study case using benchmark functions in R from Scratch
Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.