Carlos Renan Moreira, C. Pacheco, Marcos Vinícius Pereira Diógenes, Cicília Raquel Maia Leite
{"title":"Mining_RNA系统的开发和验证","authors":"Carlos Renan Moreira, C. Pacheco, Marcos Vinícius Pereira Diógenes, Cicília Raquel Maia Leite","doi":"10.5335/rbca.v13i3.12285","DOIUrl":null,"url":null,"abstract":"O sequenciamento do genoma humano proporcionou o aprofundamento de diversos tipos de estudos e tecnologias de análise biológica, dentre estas, o microarranjo. A necessidade publicar os dados brutos dessas pesquisas impulsionou a criação de bancos de dados públicos onde essas informações pudessem ser indexadas e resgatadas. Essas bases são uma grande fonte de dados transcriptômicos que infelizmente acabam sendo subutilizadas. O objetivo deste trabalho foi o desenvolvimento de um sistema WEB para mineração de dados em estudos transcriptômicos a partir de microarranjos armazenados no banco de dados biológico Gene Expression Omnibus (GEO), o Mining_RNA. Através de uma usabilidade passo-a-passo juntamente com uma série de filtros o sistema possibilita resgatar dados do GEO, calcular a expressão diferencial entre os genes de um estudo, possibilitando ainda análises estatísticas para cada gene do estudo analisado. O sistema foi validado através da comparação com a avaliação dos mesmos dados com o software GEO2R (eficácia aproximada de 98%) e no estudo original (eficácia maior que 90%). Mining_RNA pode ser um forte aliado dos pesquisadores para a reanálise de estudos transcriptômicos, possibilitando uma nova forma de analisar os dados e gerando resultados tão confiáveis quanto ferramentas já consolidadas.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desenvolvimento e validação do sistema Mining_RNA\",\"authors\":\"Carlos Renan Moreira, C. Pacheco, Marcos Vinícius Pereira Diógenes, Cicília Raquel Maia Leite\",\"doi\":\"10.5335/rbca.v13i3.12285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O sequenciamento do genoma humano proporcionou o aprofundamento de diversos tipos de estudos e tecnologias de análise biológica, dentre estas, o microarranjo. A necessidade publicar os dados brutos dessas pesquisas impulsionou a criação de bancos de dados públicos onde essas informações pudessem ser indexadas e resgatadas. Essas bases são uma grande fonte de dados transcriptômicos que infelizmente acabam sendo subutilizadas. O objetivo deste trabalho foi o desenvolvimento de um sistema WEB para mineração de dados em estudos transcriptômicos a partir de microarranjos armazenados no banco de dados biológico Gene Expression Omnibus (GEO), o Mining_RNA. Através de uma usabilidade passo-a-passo juntamente com uma série de filtros o sistema possibilita resgatar dados do GEO, calcular a expressão diferencial entre os genes de um estudo, possibilitando ainda análises estatísticas para cada gene do estudo analisado. O sistema foi validado através da comparação com a avaliação dos mesmos dados com o software GEO2R (eficácia aproximada de 98%) e no estudo original (eficácia maior que 90%). Mining_RNA pode ser um forte aliado dos pesquisadores para a reanálise de estudos transcriptômicos, possibilitando uma nova forma de analisar os dados e gerando resultados tão confiáveis quanto ferramentas já consolidadas.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v13i3.12285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v13i3.12285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
O sequenciamento do genoma humano proporcionou o aprofundamento de diversos tipos de estudos e tecnologias de análise biológica, dentre estas, o microarranjo. A necessidade publicar os dados brutos dessas pesquisas impulsionou a criação de bancos de dados públicos onde essas informações pudessem ser indexadas e resgatadas. Essas bases são uma grande fonte de dados transcriptômicos que infelizmente acabam sendo subutilizadas. O objetivo deste trabalho foi o desenvolvimento de um sistema WEB para mineração de dados em estudos transcriptômicos a partir de microarranjos armazenados no banco de dados biológico Gene Expression Omnibus (GEO), o Mining_RNA. Através de uma usabilidade passo-a-passo juntamente com uma série de filtros o sistema possibilita resgatar dados do GEO, calcular a expressão diferencial entre os genes de um estudo, possibilitando ainda análises estatísticas para cada gene do estudo analisado. O sistema foi validado através da comparação com a avaliação dos mesmos dados com o software GEO2R (eficácia aproximada de 98%) e no estudo original (eficácia maior que 90%). Mining_RNA pode ser um forte aliado dos pesquisadores para a reanálise de estudos transcriptômicos, possibilitando uma nova forma de analisar os dados e gerando resultados tão confiáveis quanto ferramentas já consolidadas.