AutoRL-TSP RSM:求解旅行商问题的响应面方法的自动强化学习系统

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2021-11-29 DOI:10.5335/rbca.v13i3.12653
Gleice Kelly Barbosa Souza, A. L. C. Ottoni
{"title":"AutoRL-TSP RSM:求解旅行商问题的响应面方法的自动强化学习系统","authors":"Gleice Kelly Barbosa Souza, A. L. C. Ottoni","doi":"10.5335/rbca.v13i3.12653","DOIUrl":null,"url":null,"abstract":"A definição de parâmetros é uma importante etapa para a utilização de métodos de Aprendizado de Máquina. No entanto, pode ser altamente custoso definir esses valores de condições iniciais para cada aplicação. Assim, este trabalho tem como objetivo propor um sistema de Aprendizado de Máquina Automatizado para ajuste de parâmetros. Nesta linha, foi desenvolvido um método de Aprendizado por Reforço Automatizado aplicado ao Problema do Caixeiro Viajante. O sistema proposto ajustou através da Metodologia de Superfície de Resposta dois parâmetros (taxa de aprendizado e fator de desconto) do algoritmo Q-learning. Os resultados revelaram que os valores ajustados pelo método proposto alcançaram, em geral, as melhores soluções, em comparação com a adoção de parâmetros da literatura.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AutoRL-TSP-RSM: sistema de aprendizado por reforço automatizado com metodologia de superfície de resposta para o problema do caixeiro viajante\",\"authors\":\"Gleice Kelly Barbosa Souza, A. L. C. Ottoni\",\"doi\":\"10.5335/rbca.v13i3.12653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A definição de parâmetros é uma importante etapa para a utilização de métodos de Aprendizado de Máquina. No entanto, pode ser altamente custoso definir esses valores de condições iniciais para cada aplicação. Assim, este trabalho tem como objetivo propor um sistema de Aprendizado de Máquina Automatizado para ajuste de parâmetros. Nesta linha, foi desenvolvido um método de Aprendizado por Reforço Automatizado aplicado ao Problema do Caixeiro Viajante. O sistema proposto ajustou através da Metodologia de Superfície de Resposta dois parâmetros (taxa de aprendizado e fator de desconto) do algoritmo Q-learning. Os resultados revelaram que os valores ajustados pelo método proposto alcançaram, em geral, as melhores soluções, em comparação com a adoção de parâmetros da literatura.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v13i3.12653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v13i3.12653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

参数的定义是一个重要的阶段,使用机器学习的方法。然而,高度完全可以定义这些值为每个应用程序的初始条件。这样,这项工作的目的是提出一个自动化机器学习系统,调整参数。这条,是一个学习的方法,通过加强自动化应用于旅行商问题。提出调整系统通过响应面方法的两个参数(学习速率和折扣因素)的Q学习算法。结果显示值调整的方法达到了,一般来说,最好的解决方案相比,采用参数,文学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoRL-TSP-RSM: sistema de aprendizado por reforço automatizado com metodologia de superfície de resposta para o problema do caixeiro viajante
A definição de parâmetros é uma importante etapa para a utilização de métodos de Aprendizado de Máquina. No entanto, pode ser altamente custoso definir esses valores de condições iniciais para cada aplicação. Assim, este trabalho tem como objetivo propor um sistema de Aprendizado de Máquina Automatizado para ajuste de parâmetros. Nesta linha, foi desenvolvido um método de Aprendizado por Reforço Automatizado aplicado ao Problema do Caixeiro Viajante. O sistema proposto ajustou através da Metodologia de Superfície de Resposta dois parâmetros (taxa de aprendizado e fator de desconto) do algoritmo Q-learning. Os resultados revelaram que os valores ajustados pelo método proposto alcançaram, em geral, as melhores soluções, em comparação com a adoção de parâmetros da literatura.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1