通过合并来自不同颜色和深度相机的数据,改进了低成本的3D重建管道

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2022-07-13 DOI:10.5335/rbca.v14i2.13045
Eberty Alves da Silva, Karl Apaza-Agüero
{"title":"通过合并来自不同颜色和深度相机的数据,改进了低成本的3D重建管道","authors":"Eberty Alves da Silva, Karl Apaza-Agüero","doi":"10.5335/rbca.v14i2.13045","DOIUrl":null,"url":null,"abstract":"The performance of traditional 3D capture methods directly influences the quality of digitally reconstructed 3D models. In order to obtain complete and well-detailed low-cost three-dimensional models, this paper proposes a 3D reconstruction pipeline using point clouds from different sensors, combining captures of a low-cost depth sensor post-processed by Super-Resolution techniques with high-resolution RGB images from an external camera using Structure from Motion and Multi-View Stereo output data. The main contribution of this work includes the description of a complete pipeline that improves the stage of information acquisition and merges data from different sensors. Several phases of the 3D reconstruction pipeline were also specialized to improve the model's visual quality. The experimental evaluation demonstrates that the developed method produces good and reliable results for low-cost 3D reconstruction of an object.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved low-cost 3D reconstruction pipeline by merging data from different color and depth cameras\",\"authors\":\"Eberty Alves da Silva, Karl Apaza-Agüero\",\"doi\":\"10.5335/rbca.v14i2.13045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of traditional 3D capture methods directly influences the quality of digitally reconstructed 3D models. In order to obtain complete and well-detailed low-cost three-dimensional models, this paper proposes a 3D reconstruction pipeline using point clouds from different sensors, combining captures of a low-cost depth sensor post-processed by Super-Resolution techniques with high-resolution RGB images from an external camera using Structure from Motion and Multi-View Stereo output data. The main contribution of this work includes the description of a complete pipeline that improves the stage of information acquisition and merges data from different sensors. Several phases of the 3D reconstruction pipeline were also specialized to improve the model's visual quality. The experimental evaluation demonstrates that the developed method produces good and reliable results for low-cost 3D reconstruction of an object.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v14i2.13045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v14i2.13045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

传统三维捕获方法的性能直接影响数字重建三维模型的质量。为了获得完整、精细的低成本三维模型,本文提出了一种利用不同传感器点云的三维重建管道,将采用超分辨率技术后处理的低成本深度传感器捕获的图像与使用运动结构和多视图立体输出数据的外部相机的高分辨率RGB图像相结合。这项工作的主要贡献包括描述了一个完整的管道,提高了信息获取的阶段,并合并了来自不同传感器的数据。3D重建管道的几个阶段也专门用于提高模型的视觉质量。实验结果表明,该方法可实现低成本的物体三维重建,效果良好、可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved low-cost 3D reconstruction pipeline by merging data from different color and depth cameras
The performance of traditional 3D capture methods directly influences the quality of digitally reconstructed 3D models. In order to obtain complete and well-detailed low-cost three-dimensional models, this paper proposes a 3D reconstruction pipeline using point clouds from different sensors, combining captures of a low-cost depth sensor post-processed by Super-Resolution techniques with high-resolution RGB images from an external camera using Structure from Motion and Multi-View Stereo output data. The main contribution of this work includes the description of a complete pipeline that improves the stage of information acquisition and merges data from different sensors. Several phases of the 3D reconstruction pipeline were also specialized to improve the model's visual quality. The experimental evaluation demonstrates that the developed method produces good and reliable results for low-cost 3D reconstruction of an object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1