{"title":"利用极化相关等离子体耦合测定金属纳米二聚体的距离和取向","authors":"H. Grecco, O. Mart'inez","doi":"10.4279/pip.020010","DOIUrl":null,"url":null,"abstract":"Live cell imaging using metallic nanoparticles as tags is an emerging technique to visualize long and highly dynamic processes due to the lack of photobleaching and high photon rate. However, the lack of excited states as compared to fluorescent dyes prevents the use of resonance energy transfer and recently developed super resolution methods to measure distances between objects closer that the resolution limit. In this work, we experimentally demonstrate a technique to determine subdiffraction distances based on the near field coupling of metallic nanoparticles. Due to the symmetry breaking in the scattering cross section, not only distances but also relative orientations can be measured. Gold nanoparticles were prepared on glass in such way that a small fraction of dimers was present. The sample was sequentially illuminated with two wavelengths to separate background from nanoparticle scattering based on their spectral properties. A novel total internal reflection illumination scheme in which the polarization can be rotated was used to further minimize background contributions. In this way, radii, distance and orientation were measured for each individual dimer and their statistical distributions were found to be in agreement with the expected ones. We envision that this technique will allow fast and long term tracking of relative distance and orientation in biological processes. Received: 22 April 2010, Accepted: 2 December 2010; Edited by: V. Lakshminarayanan; Reviewed by: S. Roy, Dayalbagh Educational Institute, Agra, India; DOI: 10.4279/PIP.020010","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2011-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental determination of distance and orientation of metallic nanodimers by polarization dependent plasmon coupling\",\"authors\":\"H. Grecco, O. Mart'inez\",\"doi\":\"10.4279/pip.020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Live cell imaging using metallic nanoparticles as tags is an emerging technique to visualize long and highly dynamic processes due to the lack of photobleaching and high photon rate. However, the lack of excited states as compared to fluorescent dyes prevents the use of resonance energy transfer and recently developed super resolution methods to measure distances between objects closer that the resolution limit. In this work, we experimentally demonstrate a technique to determine subdiffraction distances based on the near field coupling of metallic nanoparticles. Due to the symmetry breaking in the scattering cross section, not only distances but also relative orientations can be measured. Gold nanoparticles were prepared on glass in such way that a small fraction of dimers was present. The sample was sequentially illuminated with two wavelengths to separate background from nanoparticle scattering based on their spectral properties. A novel total internal reflection illumination scheme in which the polarization can be rotated was used to further minimize background contributions. In this way, radii, distance and orientation were measured for each individual dimer and their statistical distributions were found to be in agreement with the expected ones. We envision that this technique will allow fast and long term tracking of relative distance and orientation in biological processes. Received: 22 April 2010, Accepted: 2 December 2010; Edited by: V. Lakshminarayanan; Reviewed by: S. Roy, Dayalbagh Educational Institute, Agra, India; DOI: 10.4279/PIP.020010\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2011-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental determination of distance and orientation of metallic nanodimers by polarization dependent plasmon coupling
Live cell imaging using metallic nanoparticles as tags is an emerging technique to visualize long and highly dynamic processes due to the lack of photobleaching and high photon rate. However, the lack of excited states as compared to fluorescent dyes prevents the use of resonance energy transfer and recently developed super resolution methods to measure distances between objects closer that the resolution limit. In this work, we experimentally demonstrate a technique to determine subdiffraction distances based on the near field coupling of metallic nanoparticles. Due to the symmetry breaking in the scattering cross section, not only distances but also relative orientations can be measured. Gold nanoparticles were prepared on glass in such way that a small fraction of dimers was present. The sample was sequentially illuminated with two wavelengths to separate background from nanoparticle scattering based on their spectral properties. A novel total internal reflection illumination scheme in which the polarization can be rotated was used to further minimize background contributions. In this way, radii, distance and orientation were measured for each individual dimer and their statistical distributions were found to be in agreement with the expected ones. We envision that this technique will allow fast and long term tracking of relative distance and orientation in biological processes. Received: 22 April 2010, Accepted: 2 December 2010; Edited by: V. Lakshminarayanan; Reviewed by: S. Roy, Dayalbagh Educational Institute, Agra, India; DOI: 10.4279/PIP.020010
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.