混合长丝缠绕复合管(芳纶纤维/玻璃纤维)-环氧树脂和(碳纤维/玻璃纤维)-环氧树脂:体积、机械和水力特性

J. Radulovic
{"title":"混合长丝缠绕复合管(芳纶纤维/玻璃纤维)-环氧树脂和(碳纤维/玻璃纤维)-环氧树脂:体积、机械和水力特性","authors":"J. Radulovic","doi":"10.5937/str2201033r","DOIUrl":null,"url":null,"abstract":"In this paper volumetric, mechanical and hydraulic characteristics of filament wound composite one fiber tubes and hybrid tubes are presented. Composite hybrid materials, produced by filament winding technology, are categorized according to different ways of classification of hybrid materials. Four fibrous reinforcement agents (glass G600, polyamide aromatic K49, carbon T300 and carbon T800) and two impregnation agent systems (epoxy 0164 and epoxy L20) are used for manufacturing of filament wound tubes. Density, tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure of two filament wound glass fiber/epoxy resins tubes (as starting materials) and of twelve filament wound hybrid tubes are investigated. Four highest values of tensile strength and hydraulic burst pressure are of the next schedule: hybrid tubes mark G600-T800/L20 (the highest), hybrid tubes mark G600-T800/0164, hybrid tubes mark G600-T300/L20 and hybrid tubes mark G600-K49/L20. Also, a row of four highest specific tensile strength and highest specific hydraulic burst pressure begins with hybrid tubes mark G600-T800/L20, but the schedule of the next three tubes is different due to density of aramide composite materials (hybrid tubes mark G600-K49/L20, hybrid tubes mark G600-T800/0164 and hybrid tubes mark G600-K49/0164). All filament wound tubes (single fiber tubes and hybrid tubes) with epoxy L20 have a slightly lower density value but higher values of tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure than appropriate tubes impregnated with epoxy 0164. Obtained results in this testing indicate and emphasize the importance of advanced reinforcing agents (aramide roving and carbon fibers), of impregnating agents (epoxy resin systems) and of the density of hybrid tubes, especially with aramide roving.","PeriodicalId":33842,"journal":{"name":"Scientific Technical Review","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid filament wound composite tubes (aramide fiber/glass fiber)-epoxy resins and (carbon fibers/glass fiber)-epoxy resins: Volumetric, mechanical and hydraulic characteristics\",\"authors\":\"J. Radulovic\",\"doi\":\"10.5937/str2201033r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper volumetric, mechanical and hydraulic characteristics of filament wound composite one fiber tubes and hybrid tubes are presented. Composite hybrid materials, produced by filament winding technology, are categorized according to different ways of classification of hybrid materials. Four fibrous reinforcement agents (glass G600, polyamide aromatic K49, carbon T300 and carbon T800) and two impregnation agent systems (epoxy 0164 and epoxy L20) are used for manufacturing of filament wound tubes. Density, tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure of two filament wound glass fiber/epoxy resins tubes (as starting materials) and of twelve filament wound hybrid tubes are investigated. Four highest values of tensile strength and hydraulic burst pressure are of the next schedule: hybrid tubes mark G600-T800/L20 (the highest), hybrid tubes mark G600-T800/0164, hybrid tubes mark G600-T300/L20 and hybrid tubes mark G600-K49/L20. Also, a row of four highest specific tensile strength and highest specific hydraulic burst pressure begins with hybrid tubes mark G600-T800/L20, but the schedule of the next three tubes is different due to density of aramide composite materials (hybrid tubes mark G600-K49/L20, hybrid tubes mark G600-T800/0164 and hybrid tubes mark G600-K49/0164). All filament wound tubes (single fiber tubes and hybrid tubes) with epoxy L20 have a slightly lower density value but higher values of tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure than appropriate tubes impregnated with epoxy 0164. Obtained results in this testing indicate and emphasize the importance of advanced reinforcing agents (aramide roving and carbon fibers), of impregnating agents (epoxy resin systems) and of the density of hybrid tubes, especially with aramide roving.\",\"PeriodicalId\":33842,\"journal\":{\"name\":\"Scientific Technical Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Technical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/str2201033r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Technical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/str2201033r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了长丝缠绕复合单纤维管和混杂纤维管的体积、力学和水力特性。根据不同的混杂材料分类方法,对长丝缠绕技术生产的复合杂化材料进行了分类。四种纤维增强剂(玻璃G600、聚酰胺芳香族K49、碳T300和碳T800)和两种浸渍剂体系(环氧0164和环氧L20)用于制造长丝缠绕管。研究了两根缠绕玻璃纤维/环氧树脂管(作为起始材料)和12根缠绕玻璃纤维/环氧树脂管的密度、抗拉强度、比抗拉强度、破裂压力和破裂压力。抗拉强度和液压破裂压力的四个最高值为:混合管标记G600-T800/L20(最高),混合管标记G600-T800/0164,混合管标记G600-T300/L20和混合管标记G600-K49/L20。此外,一排四个最高比拉伸强度和最高比液压破裂压力从标记为G600-T800/L20的混合管开始,但由于芳纶复合材料的密度不同,后面三个管的时间表不同(标记为G600-K49/L20的混合管,标记为G600-T800/0164的混合管和标记为G600-K49/0164的混合管)。与环氧0164浸渍的纤维缠绕管相比,所有的纤维缠绕管(单纤维管和杂化管)的密度值略低,但抗拉强度、比抗拉强度、水力爆裂压力和水力爆裂压力均较高。该试验的结果表明并强调了高级增强剂(芳纶粗纱和碳纤维)、浸渍剂(环氧树脂体系)和混杂管密度的重要性,特别是芳纶粗纱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid filament wound composite tubes (aramide fiber/glass fiber)-epoxy resins and (carbon fibers/glass fiber)-epoxy resins: Volumetric, mechanical and hydraulic characteristics
In this paper volumetric, mechanical and hydraulic characteristics of filament wound composite one fiber tubes and hybrid tubes are presented. Composite hybrid materials, produced by filament winding technology, are categorized according to different ways of classification of hybrid materials. Four fibrous reinforcement agents (glass G600, polyamide aromatic K49, carbon T300 and carbon T800) and two impregnation agent systems (epoxy 0164 and epoxy L20) are used for manufacturing of filament wound tubes. Density, tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure of two filament wound glass fiber/epoxy resins tubes (as starting materials) and of twelve filament wound hybrid tubes are investigated. Four highest values of tensile strength and hydraulic burst pressure are of the next schedule: hybrid tubes mark G600-T800/L20 (the highest), hybrid tubes mark G600-T800/0164, hybrid tubes mark G600-T300/L20 and hybrid tubes mark G600-K49/L20. Also, a row of four highest specific tensile strength and highest specific hydraulic burst pressure begins with hybrid tubes mark G600-T800/L20, but the schedule of the next three tubes is different due to density of aramide composite materials (hybrid tubes mark G600-K49/L20, hybrid tubes mark G600-T800/0164 and hybrid tubes mark G600-K49/0164). All filament wound tubes (single fiber tubes and hybrid tubes) with epoxy L20 have a slightly lower density value but higher values of tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure than appropriate tubes impregnated with epoxy 0164. Obtained results in this testing indicate and emphasize the importance of advanced reinforcing agents (aramide roving and carbon fibers), of impregnating agents (epoxy resin systems) and of the density of hybrid tubes, especially with aramide roving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Air and precipitation testing as part of environmental radiation monitoring in the vicinity of nuclear facilities The utilizing Hall effect-based current sensor ACS712 for true RMS current measurement in power electronic systems Hybrid filament wound composite tubes (aramide fiber/glass fiber)-epoxy resins and (carbon fibers/glass fiber)-epoxy resins: Volumetric, mechanical and hydraulic characteristics Mechanical engineering design optimization using reptile search algorithm Analysis and optimization of the main girder of the bridge crane with an asymmetric box cross-section
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1