{"title":"Abutilon indicum (L.)提取物对3T3L1细胞、RIN5f细胞葡萄糖摄取的体外活性及血糖指数刺激抑制作用的研究","authors":"L. L., Veeraraghavan V., Srihari Renuka, P. C N","doi":"10.7324/jabb.2021.100118","DOIUrl":null,"url":null,"abstract":"Abutilon indicum (L.) is one of the traditional medicinal plants and its extract has been utilized for antidiabetic activity. Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and its occurrence is increasing fast in most countries. Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in adipogenesis. The present study determines the effect of A. indicum methanolic leaf extract as potential antidiabetic inhibitors. The in vitro analysis was carried out by using 3T3L1 for glucose uptake assay, RIN5F cell lines for insulin secretion, hydrolysis assay to predict glycemic index, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay, and molecular interaction of the known bioactive compounds with PPARγ. The experimental results showed 100 nM insulin and 50 mM LiCl glucose uptake with 3.37 and 3.86 fold stimulation, respectively, when compared to the control, whereas the given samples of 200, 400, and 800 μg/ml showed 1.37, 1.62, and 1.85 μg/ml fold stimulation, respectively, when compared to the control. The insulin release in RIN-5f cells was observed with a positive control and crude extract and the results showed 4.67 and 2.67 μg/ml, respectively. The hydrolysis index value was found to be 53.30 and the glycemic load was 17.48 μg/ml. In the DPPH assay, the sample showed dose-dependent DPPH radical scavenging activity with an IC50 value of 99.12 μg/ml when compared to standard quercetin with an IC50 value of 1.7 μg/ml. The molecular interaction of PPARγ and active methyl trans-p-coumarate (−5.44) > methyl caffeate (−4.49) > syringic acid (−3.9) > pinellic acid (−2.62) compared with thiazolidinediones (−7.62) formed a novel type of oral antidiabetic medication that improved metabolic management in type 2 diabetic patients by increasing insulin sensitivity. The overall result shows that A. indicum (L.) is a potential indicator for sensitizing insulin secretion and strongly inhibits the release of glucagon which can be used as a therapeutic agent for treating and managing diabetes.","PeriodicalId":15032,"journal":{"name":"Journal of Applied Biology and Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of in vitro activity on glucose uptake of 3T3L1 cells, RIN5f cells, and glycemic index stimulation inhibitory effect of Abutilon indicum (L.) extract\",\"authors\":\"L. L., Veeraraghavan V., Srihari Renuka, P. C N\",\"doi\":\"10.7324/jabb.2021.100118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abutilon indicum (L.) is one of the traditional medicinal plants and its extract has been utilized for antidiabetic activity. Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and its occurrence is increasing fast in most countries. Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in adipogenesis. The present study determines the effect of A. indicum methanolic leaf extract as potential antidiabetic inhibitors. The in vitro analysis was carried out by using 3T3L1 for glucose uptake assay, RIN5F cell lines for insulin secretion, hydrolysis assay to predict glycemic index, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay, and molecular interaction of the known bioactive compounds with PPARγ. The experimental results showed 100 nM insulin and 50 mM LiCl glucose uptake with 3.37 and 3.86 fold stimulation, respectively, when compared to the control, whereas the given samples of 200, 400, and 800 μg/ml showed 1.37, 1.62, and 1.85 μg/ml fold stimulation, respectively, when compared to the control. The insulin release in RIN-5f cells was observed with a positive control and crude extract and the results showed 4.67 and 2.67 μg/ml, respectively. The hydrolysis index value was found to be 53.30 and the glycemic load was 17.48 μg/ml. In the DPPH assay, the sample showed dose-dependent DPPH radical scavenging activity with an IC50 value of 99.12 μg/ml when compared to standard quercetin with an IC50 value of 1.7 μg/ml. The molecular interaction of PPARγ and active methyl trans-p-coumarate (−5.44) > methyl caffeate (−4.49) > syringic acid (−3.9) > pinellic acid (−2.62) compared with thiazolidinediones (−7.62) formed a novel type of oral antidiabetic medication that improved metabolic management in type 2 diabetic patients by increasing insulin sensitivity. The overall result shows that A. indicum (L.) is a potential indicator for sensitizing insulin secretion and strongly inhibits the release of glucagon which can be used as a therapeutic agent for treating and managing diabetes.\",\"PeriodicalId\":15032,\"journal\":{\"name\":\"Journal of Applied Biology and Biotechnology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/jabb.2021.100118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2021.100118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Study of in vitro activity on glucose uptake of 3T3L1 cells, RIN5f cells, and glycemic index stimulation inhibitory effect of Abutilon indicum (L.) extract
Abutilon indicum (L.) is one of the traditional medicinal plants and its extract has been utilized for antidiabetic activity. Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and its occurrence is increasing fast in most countries. Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in adipogenesis. The present study determines the effect of A. indicum methanolic leaf extract as potential antidiabetic inhibitors. The in vitro analysis was carried out by using 3T3L1 for glucose uptake assay, RIN5F cell lines for insulin secretion, hydrolysis assay to predict glycemic index, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay, and molecular interaction of the known bioactive compounds with PPARγ. The experimental results showed 100 nM insulin and 50 mM LiCl glucose uptake with 3.37 and 3.86 fold stimulation, respectively, when compared to the control, whereas the given samples of 200, 400, and 800 μg/ml showed 1.37, 1.62, and 1.85 μg/ml fold stimulation, respectively, when compared to the control. The insulin release in RIN-5f cells was observed with a positive control and crude extract and the results showed 4.67 and 2.67 μg/ml, respectively. The hydrolysis index value was found to be 53.30 and the glycemic load was 17.48 μg/ml. In the DPPH assay, the sample showed dose-dependent DPPH radical scavenging activity with an IC50 value of 99.12 μg/ml when compared to standard quercetin with an IC50 value of 1.7 μg/ml. The molecular interaction of PPARγ and active methyl trans-p-coumarate (−5.44) > methyl caffeate (−4.49) > syringic acid (−3.9) > pinellic acid (−2.62) compared with thiazolidinediones (−7.62) formed a novel type of oral antidiabetic medication that improved metabolic management in type 2 diabetic patients by increasing insulin sensitivity. The overall result shows that A. indicum (L.) is a potential indicator for sensitizing insulin secretion and strongly inhibits the release of glucagon which can be used as a therapeutic agent for treating and managing diabetes.