幼激素通过Kr-h1/Dnmt2介导的Acp65A启动子的DNA甲基化抑制黑腹果蝇成虫角质层的形成。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Insect Molecular Biology Pub Date : 2023-11-02 DOI:10.1111/imb.12884
Qianyu He, Xiaochun Fan, Shunxin Wang, Shanshan Chen, Jinxia Chen
{"title":"幼激素通过Kr-h1/Dnmt2介导的Acp65A启动子的DNA甲基化抑制黑腹果蝇成虫角质层的形成。","authors":"Qianyu He,&nbsp;Xiaochun Fan,&nbsp;Shunxin Wang,&nbsp;Shanshan Chen,&nbsp;Jinxia Chen","doi":"10.1111/imb.12884","DOIUrl":null,"url":null,"abstract":"<p>Differentiation of imaginal epidermal cells of <i>Drosophila melanogaster</i> to form adult cuticles occurs at approximately 40–93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene <i>Acp65A</i> has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene <i>Krüppel homologue 1</i> (<i>Kr-h1</i>) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of <i>Kr-h1</i> mimicked—while knocking down of <i>Kr-h1</i> attenuated—the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of <i>Acp65A</i> by directly binding to the consensus Kr-h1 binding site (KBS) within the <i>Acp65A</i> promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of <i>Acp65A</i>. This study advances our understanding of the molecular basis of the “status quo” action of JH on the <i>Drosophila</i> adult metamorphosis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter\",\"authors\":\"Qianyu He,&nbsp;Xiaochun Fan,&nbsp;Shunxin Wang,&nbsp;Shanshan Chen,&nbsp;Jinxia Chen\",\"doi\":\"10.1111/imb.12884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differentiation of imaginal epidermal cells of <i>Drosophila melanogaster</i> to form adult cuticles occurs at approximately 40–93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene <i>Acp65A</i> has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene <i>Krüppel homologue 1</i> (<i>Kr-h1</i>) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of <i>Kr-h1</i> mimicked—while knocking down of <i>Kr-h1</i> attenuated—the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of <i>Acp65A</i> by directly binding to the consensus Kr-h1 binding site (KBS) within the <i>Acp65A</i> promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of <i>Acp65A</i>. This study advances our understanding of the molecular basis of the “status quo” action of JH on the <i>Drosophila</i> adult metamorphosis.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12884\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12884","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

黑腹果蝇的想象表皮细胞分化形成成年角质层发生在大约40-93 h。蛹蜕皮时给予的幼激素(JH)会在腹部形成第二个蛹角质层,而不是成虫角质层。尽管成人角质层基因Acp65A已被报道在JH治疗后下调,但其调节机制尚不清楚。在这里,我们发现JH初级反应基因Krüppel同源物1(Kr-h1)通过JH作用在抑制成人角质层形成中发挥着至关重要的作用。Kr-h1的过表达模拟了敲低Kr-h1,减弱了JH对成人腹部角质层形成的抑制作用。此外,我们发现Kr-h1通过直接结合Acp65A启动子区内的共有Kr-h1结合位点(KBS)来抑制Acp65A的转录。此外,DNA甲基转移酶Dnmt2显示与Kr-h1相互作用,与KBS结合以促进KBS周围序列的DNA甲基化,进而抑制Acp65A的转录。本研究加深了我们对JH对果蝇成虫变态“现状”作用的分子基础的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter

Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40–93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked—while knocking down of Kr-h1 attenuated—the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the “status quo” action of JH on the Drosophila adult metamorphosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
期刊最新文献
Host trees partially explain the complex bacterial communities of two threatened saproxylic beetles. Juvenile hormone controls trehalose metabolism by regulating trehalase 2 activity in ovarian development of Helicoverpa armigera. Issue Information NPF and sNPF can regulate the feeding behaviour and affect the growth and antioxidant levels of the rice brown planthopper, Nilaparvata lugens. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1