Christoph Anders, Gabriel Curio, Bert Arnrich, Gunnar Waterstraat
{"title":"用于脑电图数据时间序列分类的数据预处理方法的优化。","authors":"Christoph Anders, Gabriel Curio, Bert Arnrich, Gunnar Waterstraat","doi":"10.1080/0954898X.2023.2263083","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of time-series classification of electroencephalographic data varies strongly across experimental paradigms and study participants. Reasons are task-dependent differences in neuronal processing and seemingly random variations between subjects, amongst others. The effect of data pre-processing techniques to ameliorate these challenges is relatively little studied. Here, the influence of spatial filter optimization methods and non-linear data transformation on time-series classification performance is analyzed by the example of high-frequency somatosensory evoked responses. This is a model paradigm for the analysis of high-frequency electroencephalography data at a very low signal-to-noise ratio, which emphasizes the differences of the explored methods. For the utilized data, it was found that the individual signal-to-noise ratio explained up to 74% of the performance differences between subjects. While data pre-processing was shown to increase average time-series classification performance, it could not fully compensate the signal-to-noise ratio differences between the subjects. This study proposes an algorithm to prototype and benchmark pre-processing pipelines for a paradigm and data set at hand. Extreme learning machines, Random Forest, and Logistic Regression can be used quickly to compare a set of potentially suitable pipelines. For subsequent classification, however, machine learning models were shown to provide better accuracy.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"374-391"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of data pre-processing methods for time-series classification of electroencephalography data.\",\"authors\":\"Christoph Anders, Gabriel Curio, Bert Arnrich, Gunnar Waterstraat\",\"doi\":\"10.1080/0954898X.2023.2263083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance of time-series classification of electroencephalographic data varies strongly across experimental paradigms and study participants. Reasons are task-dependent differences in neuronal processing and seemingly random variations between subjects, amongst others. The effect of data pre-processing techniques to ameliorate these challenges is relatively little studied. Here, the influence of spatial filter optimization methods and non-linear data transformation on time-series classification performance is analyzed by the example of high-frequency somatosensory evoked responses. This is a model paradigm for the analysis of high-frequency electroencephalography data at a very low signal-to-noise ratio, which emphasizes the differences of the explored methods. For the utilized data, it was found that the individual signal-to-noise ratio explained up to 74% of the performance differences between subjects. While data pre-processing was shown to increase average time-series classification performance, it could not fully compensate the signal-to-noise ratio differences between the subjects. This study proposes an algorithm to prototype and benchmark pre-processing pipelines for a paradigm and data set at hand. Extreme learning machines, Random Forest, and Logistic Regression can be used quickly to compare a set of potentially suitable pipelines. For subsequent classification, however, machine learning models were shown to provide better accuracy.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"374-391\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2263083\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2263083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimization of data pre-processing methods for time-series classification of electroencephalography data.
The performance of time-series classification of electroencephalographic data varies strongly across experimental paradigms and study participants. Reasons are task-dependent differences in neuronal processing and seemingly random variations between subjects, amongst others. The effect of data pre-processing techniques to ameliorate these challenges is relatively little studied. Here, the influence of spatial filter optimization methods and non-linear data transformation on time-series classification performance is analyzed by the example of high-frequency somatosensory evoked responses. This is a model paradigm for the analysis of high-frequency electroencephalography data at a very low signal-to-noise ratio, which emphasizes the differences of the explored methods. For the utilized data, it was found that the individual signal-to-noise ratio explained up to 74% of the performance differences between subjects. While data pre-processing was shown to increase average time-series classification performance, it could not fully compensate the signal-to-noise ratio differences between the subjects. This study proposes an algorithm to prototype and benchmark pre-processing pipelines for a paradigm and data set at hand. Extreme learning machines, Random Forest, and Logistic Regression can be used quickly to compare a set of potentially suitable pipelines. For subsequent classification, however, machine learning models were shown to provide better accuracy.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.