Preeti Khan, Priyabrata Singha, Ronita Nag Chaudhuri
{"title":"H4K16去乙酰化和H3K56乙酰化之间的RNA聚合酶II依赖性串扰促进组成表达基因的转录。","authors":"Preeti Khan, Priyabrata Singha, Ronita Nag Chaudhuri","doi":"10.1080/10985549.2023.2270912","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleosome dynamics in the coding region of a transcriptionally active locus is critical for understanding how RNA polymerase II progresses through the gene body. Histone acetylation and deacetylation critically influence nucleosome accessibility during DNA metabolic processes like transcription. Effect of such histone modifications is context and residue dependent. Rather than effect of individual histone residues, the network of modifications of several histone residues in combination generates a chromatin landscape that is conducive for transcription. Here we show that in <i>Saccharomyces cerevisiae</i>, crosstalk between deacetylation of the H4 N-terminal tail residue H4K16 and acetylation of the H3 core domain residue H3K56, promotes RNA polymerase II progression through the gene body. Results indicate that deacetylation of H4K16 precedes and in turn induces H3K56 acetylation. Effectively, recruitment of Rtt109, the HAT responsible for H3K56 acetylation is essentially dependent on H4K16 deacetylation. In Hos2 deletion strains, where H4K16 deacetylation is abolished, both H3K56 acetylation and RNA polymerase II recruitment gets significantly impaired. Notably, H4K16 deacetylation and H3K56 acetylation are found to be essentially dependent on active transcription. In summary, H4K16 deacetylation promotes H3K56 acetylation and the two modifications together work towards successful functioning of RNA polymerase II during active transcription.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761024/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA Polymerase II Dependent Crosstalk between H4K16 Deacetylation and H3K56 Acetylation Promotes Transcription of Constitutively Expressed Genes.\",\"authors\":\"Preeti Khan, Priyabrata Singha, Ronita Nag Chaudhuri\",\"doi\":\"10.1080/10985549.2023.2270912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleosome dynamics in the coding region of a transcriptionally active locus is critical for understanding how RNA polymerase II progresses through the gene body. Histone acetylation and deacetylation critically influence nucleosome accessibility during DNA metabolic processes like transcription. Effect of such histone modifications is context and residue dependent. Rather than effect of individual histone residues, the network of modifications of several histone residues in combination generates a chromatin landscape that is conducive for transcription. Here we show that in <i>Saccharomyces cerevisiae</i>, crosstalk between deacetylation of the H4 N-terminal tail residue H4K16 and acetylation of the H3 core domain residue H3K56, promotes RNA polymerase II progression through the gene body. Results indicate that deacetylation of H4K16 precedes and in turn induces H3K56 acetylation. Effectively, recruitment of Rtt109, the HAT responsible for H3K56 acetylation is essentially dependent on H4K16 deacetylation. In Hos2 deletion strains, where H4K16 deacetylation is abolished, both H3K56 acetylation and RNA polymerase II recruitment gets significantly impaired. Notably, H4K16 deacetylation and H3K56 acetylation are found to be essentially dependent on active transcription. In summary, H4K16 deacetylation promotes H3K56 acetylation and the two modifications together work towards successful functioning of RNA polymerase II during active transcription.</p>\",\"PeriodicalId\":18658,\"journal\":{\"name\":\"Molecular and Cellular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2023.2270912\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2270912","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNA Polymerase II Dependent Crosstalk between H4K16 Deacetylation and H3K56 Acetylation Promotes Transcription of Constitutively Expressed Genes.
Nucleosome dynamics in the coding region of a transcriptionally active locus is critical for understanding how RNA polymerase II progresses through the gene body. Histone acetylation and deacetylation critically influence nucleosome accessibility during DNA metabolic processes like transcription. Effect of such histone modifications is context and residue dependent. Rather than effect of individual histone residues, the network of modifications of several histone residues in combination generates a chromatin landscape that is conducive for transcription. Here we show that in Saccharomyces cerevisiae, crosstalk between deacetylation of the H4 N-terminal tail residue H4K16 and acetylation of the H3 core domain residue H3K56, promotes RNA polymerase II progression through the gene body. Results indicate that deacetylation of H4K16 precedes and in turn induces H3K56 acetylation. Effectively, recruitment of Rtt109, the HAT responsible for H3K56 acetylation is essentially dependent on H4K16 deacetylation. In Hos2 deletion strains, where H4K16 deacetylation is abolished, both H3K56 acetylation and RNA polymerase II recruitment gets significantly impaired. Notably, H4K16 deacetylation and H3K56 acetylation are found to be essentially dependent on active transcription. In summary, H4K16 deacetylation promotes H3K56 acetylation and the two modifications together work towards successful functioning of RNA polymerase II during active transcription.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.