通过内质网-质膜界面的磷酸肌醇信号控制过氧化物酶体群体。

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Traffic Pub Date : 2024-01-01 Epub Date: 2023-11-05 DOI:10.1111/tra.12923
Barbara Knoblach, Richard A Rachubinski
{"title":"通过内质网-质膜界面的磷酸肌醇信号控制过氧化物酶体群体。","authors":"Barbara Knoblach, Richard A Rachubinski","doi":"10.1111/tra.12923","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositides are lipid signaling molecules acting at the interface of membranes and the cytosol to regulate membrane trafficking, lipid transport and responses to extracellular stimuli. Peroxisomes are multicopy organelles that are highly responsive to changes in metabolic and environmental conditions. In yeast, peroxisomes are tethered to the cell cortex at defined focal structures containing the peroxisome inheritance protein, Inp1p. We investigated the potential impact of changes in cortical phosphoinositide levels on the peroxisome compartment of the yeast cell. Here we show that the phosphoinositide, phosphatidylinositol-4-phosphate (PI4P), found at the junction of the cortical endoplasmic reticulum and plasma membrane (cER-PM) acts to regulate the cell's peroxisome population. In cells lacking a cER-PM tether or the enzymatic activity of the lipid phosphatase Sac1p, cortical PI4P is elevated, peroxisome numbers and motility are increased, and peroxisomes are no longer firmly tethered to Inp1p-containing foci. Reattachment of the cER to the PM through an artificial ER-PM \"staple\" in cells lacking the cER-PM tether does not restore peroxisome populations to the wild-type condition, demonstrating that integrity of PI4P signaling at the cell cortex is required for peroxisome homeostasis.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peroxisome population control by phosphoinositide signaling at the endoplasmic reticulum-plasma membrane interface.\",\"authors\":\"Barbara Knoblach, Richard A Rachubinski\",\"doi\":\"10.1111/tra.12923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphoinositides are lipid signaling molecules acting at the interface of membranes and the cytosol to regulate membrane trafficking, lipid transport and responses to extracellular stimuli. Peroxisomes are multicopy organelles that are highly responsive to changes in metabolic and environmental conditions. In yeast, peroxisomes are tethered to the cell cortex at defined focal structures containing the peroxisome inheritance protein, Inp1p. We investigated the potential impact of changes in cortical phosphoinositide levels on the peroxisome compartment of the yeast cell. Here we show that the phosphoinositide, phosphatidylinositol-4-phosphate (PI4P), found at the junction of the cortical endoplasmic reticulum and plasma membrane (cER-PM) acts to regulate the cell's peroxisome population. In cells lacking a cER-PM tether or the enzymatic activity of the lipid phosphatase Sac1p, cortical PI4P is elevated, peroxisome numbers and motility are increased, and peroxisomes are no longer firmly tethered to Inp1p-containing foci. Reattachment of the cER to the PM through an artificial ER-PM \\\"staple\\\" in cells lacking the cER-PM tether does not restore peroxisome populations to the wild-type condition, demonstrating that integrity of PI4P signaling at the cell cortex is required for peroxisome homeostasis.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12923\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12923","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷脂酰肌醇是脂质信号分子,作用于膜和胞质溶胶的界面,调节膜运输、脂质运输和对细胞外刺激的反应。过氧化物酶体是一种多拷贝细胞器,对代谢和环境条件的变化具有高度反应性。在酵母中,过氧化物酶体与细胞皮层相连,位于含有过氧化物酶遗传蛋白Inp1p的特定局灶结构。我们研究了皮层磷酸肌醇水平变化对酵母细胞过氧化物酶体区室的潜在影响。在这里,我们发现在皮质内质网和质膜(cER-PM)连接处发现的磷脂酰肌醇-4-磷酸(PI4P)起到调节细胞过氧化物酶体群体的作用。在缺乏cER-PM系链或脂质磷酸酶Sac1p的酶活性的细胞中,皮层PI4P升高,过氧化物酶体数量和运动性增加,过氧化物酶不再牢固地束缚在含有Inp1p的病灶上。在缺乏cER-PM系链的细胞中,通过人工ER-PM“钉”将cER重新连接到PM并不能将过氧化物酶体群体恢复到野生型状态,这表明细胞皮层PI4P信号的完整性是过氧化物酶物稳态所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peroxisome population control by phosphoinositide signaling at the endoplasmic reticulum-plasma membrane interface.

Phosphoinositides are lipid signaling molecules acting at the interface of membranes and the cytosol to regulate membrane trafficking, lipid transport and responses to extracellular stimuli. Peroxisomes are multicopy organelles that are highly responsive to changes in metabolic and environmental conditions. In yeast, peroxisomes are tethered to the cell cortex at defined focal structures containing the peroxisome inheritance protein, Inp1p. We investigated the potential impact of changes in cortical phosphoinositide levels on the peroxisome compartment of the yeast cell. Here we show that the phosphoinositide, phosphatidylinositol-4-phosphate (PI4P), found at the junction of the cortical endoplasmic reticulum and plasma membrane (cER-PM) acts to regulate the cell's peroxisome population. In cells lacking a cER-PM tether or the enzymatic activity of the lipid phosphatase Sac1p, cortical PI4P is elevated, peroxisome numbers and motility are increased, and peroxisomes are no longer firmly tethered to Inp1p-containing foci. Reattachment of the cER to the PM through an artificial ER-PM "staple" in cells lacking the cER-PM tether does not restore peroxisome populations to the wild-type condition, demonstrating that integrity of PI4P signaling at the cell cortex is required for peroxisome homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
期刊最新文献
Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1