Yongcheng He, Haojun Liu, Jiajia Luo, Nuo Li, Lihua Li, Puxian Xiong, Jiulin Gan, Zhongmin Yang
{"title":"可编程驱动的可切换光热转换效率","authors":"Yongcheng He, Haojun Liu, Jiajia Luo, Nuo Li, Lihua Li, Puxian Xiong, Jiulin Gan, Zhongmin Yang","doi":"10.1038/s41528-023-00281-0","DOIUrl":null,"url":null,"abstract":"Reprogrammable soft matter brings flexibility to soft robots so that they can display various motions, which is flourishing in soft robotics. However, the reprogramming of photoresponsive materials used in soft robots is time-consuming using existing methods. In this study, we promote a strategy for rapid reprogramming via switchable photothermal conversion efficiency (PCE). The liquid crystalline elastomers doped with semiconductor bismuth compounds (Bi-LCE) used in this work exhibited large photothermal actuation with over 35% shrinkage in 5 s at high PCE state, which demonstrated little deformation at low PCE state. Furthermore, the material was capable of being reprogrammed up to 10 times, with only 20 min required for one PCE reversible switch. Based on this switchable PCE effect, the same Bi-LCE film displayed various shape changes through different programmable pattern. Additionally, a reprogrammable hollow tube made of PCE reprogrammable materials could tune the diameter, cross-section configuration, and surface morphology, which was crucial for microfluidics field. Reprogrammable materials provide endless possibilities for reusability and sustainability in robotics.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":12.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00281-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Switchable photothermal conversion efficiency for reprogrammable actuation\",\"authors\":\"Yongcheng He, Haojun Liu, Jiajia Luo, Nuo Li, Lihua Li, Puxian Xiong, Jiulin Gan, Zhongmin Yang\",\"doi\":\"10.1038/s41528-023-00281-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reprogrammable soft matter brings flexibility to soft robots so that they can display various motions, which is flourishing in soft robotics. However, the reprogramming of photoresponsive materials used in soft robots is time-consuming using existing methods. In this study, we promote a strategy for rapid reprogramming via switchable photothermal conversion efficiency (PCE). The liquid crystalline elastomers doped with semiconductor bismuth compounds (Bi-LCE) used in this work exhibited large photothermal actuation with over 35% shrinkage in 5 s at high PCE state, which demonstrated little deformation at low PCE state. Furthermore, the material was capable of being reprogrammed up to 10 times, with only 20 min required for one PCE reversible switch. Based on this switchable PCE effect, the same Bi-LCE film displayed various shape changes through different programmable pattern. Additionally, a reprogrammable hollow tube made of PCE reprogrammable materials could tune the diameter, cross-section configuration, and surface morphology, which was crucial for microfluidics field. Reprogrammable materials provide endless possibilities for reusability and sustainability in robotics.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-023-00281-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-023-00281-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00281-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Switchable photothermal conversion efficiency for reprogrammable actuation
Reprogrammable soft matter brings flexibility to soft robots so that they can display various motions, which is flourishing in soft robotics. However, the reprogramming of photoresponsive materials used in soft robots is time-consuming using existing methods. In this study, we promote a strategy for rapid reprogramming via switchable photothermal conversion efficiency (PCE). The liquid crystalline elastomers doped with semiconductor bismuth compounds (Bi-LCE) used in this work exhibited large photothermal actuation with over 35% shrinkage in 5 s at high PCE state, which demonstrated little deformation at low PCE state. Furthermore, the material was capable of being reprogrammed up to 10 times, with only 20 min required for one PCE reversible switch. Based on this switchable PCE effect, the same Bi-LCE film displayed various shape changes through different programmable pattern. Additionally, a reprogrammable hollow tube made of PCE reprogrammable materials could tune the diameter, cross-section configuration, and surface morphology, which was crucial for microfluidics field. Reprogrammable materials provide endless possibilities for reusability and sustainability in robotics.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.