基于BIM的管片衬砌等几何分析建模与仿真

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2023-11-03 DOI:10.1016/j.finel.2023.104070
Hoang-Giang Bui , Jelena Ninić , Christian Koch , Klaus Hackl , Günther Meschke
{"title":"基于BIM的管片衬砌等几何分析建模与仿真","authors":"Hoang-Giang Bui ,&nbsp;Jelena Ninić ,&nbsp;Christian Koch ,&nbsp;Klaus Hackl ,&nbsp;Günther Meschke","doi":"10.1016/j.finel.2023.104070","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing demand for underground transport infrastructures in urban areas, and associated hazards during the construction of these complex structures characterized with a number of uncertainties, there is an acute need for the development of methods and tools that enable efficient and accurate exploration of the design options to minimize risks induced to the environment. Mechanized tunneling, although it requires high initial investments compared to other tunneling methods, offers a safe and productive way to construct urban tunnels. In the mechanized tunneling process, the lining plays a critical role to provide the support for internal structures, i.e roads, facilities. At the same time, it helps stabilize the ground condition. Together with the jacking system, the lining provides the mean to thrust the tunnel shield (TBM) during excavation. In this work, we address the problem of effective modeling and simulation of the tunnel lining segment. The objective is to demonstrate a systematic and versatile approach to analyze the tunnel lining in different practical scenarios. In terms of modeling, a BIM-based approach is used, which connects the user-friendly software interface used in daily engineering practice with effective simulation tools. The proposed approach utilizes high-order definition of geometry in the design model as well as parametric model definitions to reconstruct the corresponding high-order numerical models. This results in a high-accuracy and computationally low-cost model to analyze a complex structure including an interaction with the soil based on a nonlinear surface springs model. In addition, it allows to analyze the stress and bending moment in the lining segment with high accuracy. The numerical results show that negligible modeling efforts and a reduced computational time up to ten times for given accuracy are achieved.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated BIM-based modeling and simulation of segmental tunnel lining by means of isogeometric analysis\",\"authors\":\"Hoang-Giang Bui ,&nbsp;Jelena Ninić ,&nbsp;Christian Koch ,&nbsp;Klaus Hackl ,&nbsp;Günther Meschke\",\"doi\":\"10.1016/j.finel.2023.104070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing demand for underground transport infrastructures in urban areas, and associated hazards during the construction of these complex structures characterized with a number of uncertainties, there is an acute need for the development of methods and tools that enable efficient and accurate exploration of the design options to minimize risks induced to the environment. Mechanized tunneling, although it requires high initial investments compared to other tunneling methods, offers a safe and productive way to construct urban tunnels. In the mechanized tunneling process, the lining plays a critical role to provide the support for internal structures, i.e roads, facilities. At the same time, it helps stabilize the ground condition. Together with the jacking system, the lining provides the mean to thrust the tunnel shield (TBM) during excavation. In this work, we address the problem of effective modeling and simulation of the tunnel lining segment. The objective is to demonstrate a systematic and versatile approach to analyze the tunnel lining in different practical scenarios. In terms of modeling, a BIM-based approach is used, which connects the user-friendly software interface used in daily engineering practice with effective simulation tools. The proposed approach utilizes high-order definition of geometry in the design model as well as parametric model definitions to reconstruct the corresponding high-order numerical models. This results in a high-accuracy and computationally low-cost model to analyze a complex structure including an interaction with the soil based on a nonlinear surface springs model. In addition, it allows to analyze the stress and bending moment in the lining segment with high accuracy. The numerical results show that negligible modeling efforts and a reduced computational time up to ten times for given accuracy are achieved.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X23001634\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X23001634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

随着城市地区对地下交通基础设施的需求不断增加,以及这些具有许多不确定性的复杂结构施工过程中的相关危险,迫切需要开发方法和工具,以便能够高效准确地探索设计方案,最大限度地减少对环境的风险。尽管与其他隧道施工方法相比,机械化隧道施工需要较高的初始投资,但它提供了一种安全高效的城市隧道施工方式。在机械化掘进过程中,衬砌在为内部结构(即道路、设施)提供支撑方面发挥着关键作用。同时,它有助于稳定地面状况。与顶升系统一起,衬砌提供了在开挖过程中推进隧道盾构(TBM)的手段。在这项工作中,我们解决了隧道衬砌管片的有效建模和模拟问题。其目的是展示一种系统而通用的方法来分析不同实际情况下的隧道衬砌。在建模方面,采用了基于BIM的方法,将日常工程实践中使用的用户友好的软件界面与有效的模拟工具连接起来。所提出的方法利用设计模型中几何的高阶定义以及参数模型定义来重建相应的高阶数值模型。这导致了基于非线性表面弹簧模型分析复杂结构(包括与土壤的相互作用)的高精度和计算成本低的模型。此外,它还可以高精度地分析衬砌段中的应力和弯矩。数值结果表明,对于给定的精度,建模工作可以忽略不计,计算时间可以减少十倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated BIM-based modeling and simulation of segmental tunnel lining by means of isogeometric analysis

With the increasing demand for underground transport infrastructures in urban areas, and associated hazards during the construction of these complex structures characterized with a number of uncertainties, there is an acute need for the development of methods and tools that enable efficient and accurate exploration of the design options to minimize risks induced to the environment. Mechanized tunneling, although it requires high initial investments compared to other tunneling methods, offers a safe and productive way to construct urban tunnels. In the mechanized tunneling process, the lining plays a critical role to provide the support for internal structures, i.e roads, facilities. At the same time, it helps stabilize the ground condition. Together with the jacking system, the lining provides the mean to thrust the tunnel shield (TBM) during excavation. In this work, we address the problem of effective modeling and simulation of the tunnel lining segment. The objective is to demonstrate a systematic and versatile approach to analyze the tunnel lining in different practical scenarios. In terms of modeling, a BIM-based approach is used, which connects the user-friendly software interface used in daily engineering practice with effective simulation tools. The proposed approach utilizes high-order definition of geometry in the design model as well as parametric model definitions to reconstruct the corresponding high-order numerical models. This results in a high-accuracy and computationally low-cost model to analyze a complex structure including an interaction with the soil based on a nonlinear surface springs model. In addition, it allows to analyze the stress and bending moment in the lining segment with high accuracy. The numerical results show that negligible modeling efforts and a reduced computational time up to ten times for given accuracy are achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach Impact of surface roughness on the formation of necking instabilities in additive manufactured porous metal plates subjected to dynamic plane strain stretching Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches 3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1