具有生物活性的天然产物中的脱氢氨基酸残基。

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Natural Product Reports Pub Date : 2024-02-21 DOI:10.1039/d3np00041a
Shan Wang , Kewen Wu , Ya-Jie Tang , Hai Deng
{"title":"具有生物活性的天然产物中的脱氢氨基酸残基。","authors":"Shan Wang ,&nbsp;Kewen Wu ,&nbsp;Ya-Jie Tang ,&nbsp;Hai Deng","doi":"10.1039/d3np00041a","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 2000 to up to 2023</p></div><div><p>α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.0<sub>5</sub>-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent <em>E</em>–<em>Z</em> isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays <em>E</em>/<em>Z</em> isomerism. Dhb is the simplest α-dhAA that exhibits <em>E</em>/<em>Z</em> isomerism. The <em>Z</em>-isomer of Dhb (<em>Z</em>-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and <em>Z</em>-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 2","pages":"Pages 273-297"},"PeriodicalIF":10.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dehydroamino acid residues in bioactive natural products\",\"authors\":\"Shan Wang ,&nbsp;Kewen Wu ,&nbsp;Ya-Jie Tang ,&nbsp;Hai Deng\",\"doi\":\"10.1039/d3np00041a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: 2000 to up to 2023</p></div><div><p>α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.0<sub>5</sub>-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent <em>E</em>–<em>Z</em> isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays <em>E</em>/<em>Z</em> isomerism. Dhb is the simplest α-dhAA that exhibits <em>E</em>/<em>Z</em> isomerism. The <em>Z</em>-isomer of Dhb (<em>Z</em>-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and <em>Z</em>-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.</p></div>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\"41 2\",\"pages\":\"Pages 273-297\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056824000084\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

涵盖范围:2000至2023α,β-脱氢氨基酸(dhAAs)是一种不饱和的非蛋白质原性氨基酸,存在于广泛的天然肽基代谢产物中,主要来自细菌。其他生物,如真菌、高等植物和海洋无脊椎动物,也被发现产生含有dhAA的肽。dhAAs中的α,β-不饱和度对这些分子的性质有着深远的影响。它们表现出显著的合成灵活性,易于进行迈克尔加成、过渡金属催化的交叉偶联和环加成等反应。肽/蛋白质中的这些残基在使用点击化学的生物正交应用中也显示出巨大的潜力。含有连续dhAA残基的肽在折叠物领域得到了广泛的研究,折叠物是一种自组装的超分子,模仿生物大分子(如蛋白质)折叠成明确的构象。这些肽基材料中的dhAA残基倾向于形成2.05-螺旋。因此,dhAA残基链以延伸构象排列。特别是,含有β-烯胺酸单元的肽基折叠物显示出有趣的构象、电子和超分子聚集特性,这些特性可以通过光依赖性E-Z异构化来调节。在天然产品库存中发现的大约40种dhAA中,脱氢丙氨酸(Dha)和脱氢丁酸(Dhb)含量最丰富。Dha是最简单的脱氢-α-氨基酸,或α-dhAA,没有任何几何异构体,而其重排的异构体3-氨基丙烯酸(Aaa或ΔβAla)是最容易的脱氢-β-氨基酸或β-烯胺酸,并表现出E/Z异构体。Dhb是表现出E/Z异构的最简单的α-dhAA。Dhb的Z-异构体(Z-Dhb)在空间上是有利的,并且存在于大多数含有Dhb残基的天然存在的肽中。Dha和Z-Dhb基序通常存在于核糖体合成和翻译后修饰的肽(RiPP)中。在过去的十年里,对RiPP中Dha和Dhb基序的形成进行了广泛的研究,本文将对此进行简要讨论。然而,人们对天然产物中其他dhAA残基的形成知之甚少。在这篇综述中,我们将讨论含有不寻常的dhAA残基和神秘的dhAA残基的肽基NP的生物合成的最新进展。还将讨论这些天然产物的拟议生物合成途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dehydroamino acid residues in bioactive natural products

Covering: 2000 to up to 2023

α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent EZ isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
期刊最新文献
Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products. Fungerps: discovery of the glucan synthase inhibitor enfumafungin and development of a new class of antifungal triterpene glycosides. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Human microbiota peptides: important roles in human health. Chemical diversity of cyanobacterial natural products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1