Fang ZHENG , Yan-bin WANG , Da HUO , Chun-yan WANG , Qing CAO , Jing HE , Quan SHI
{"title":"加氢热解沥青质中镍、钒的形态研究","authors":"Fang ZHENG , Yan-bin WANG , Da HUO , Chun-yan WANG , Qing CAO , Jing HE , Quan SHI","doi":"10.1016/S1872-5813(21)60333-0","DOIUrl":null,"url":null,"abstract":"<div><p>The morphology of nickel and vanadium compounds in the asphaltenes were investigated via hydropyrolysis with the help of inductively coupled plasma mass spectrometer (ICP-MS), ultraviolet-visible (UV-Vis), high-temperature gas chromatography atomic emission detection (HT GC-AED), and positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (+ESI FT-ICR MS). The results showed that the toluene soluble yields of products decreased from 64% to 19% as the hydropyrolysis temperature increased from 330 to 410 °C, while the abundance of nickel and vanadium compounds detected by GC-AED increased significantly. The molecular composition distribution of nickel and vanadyl porphyrins showed rhythmic changes with different temperatures in the hydropyrolysis of asphaltenes.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 10","pages":"Pages 1383-1388"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology study of nickel and vanadium in asphaltenes via hydropyrolysis\",\"authors\":\"Fang ZHENG , Yan-bin WANG , Da HUO , Chun-yan WANG , Qing CAO , Jing HE , Quan SHI\",\"doi\":\"10.1016/S1872-5813(21)60333-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The morphology of nickel and vanadium compounds in the asphaltenes were investigated via hydropyrolysis with the help of inductively coupled plasma mass spectrometer (ICP-MS), ultraviolet-visible (UV-Vis), high-temperature gas chromatography atomic emission detection (HT GC-AED), and positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (+ESI FT-ICR MS). The results showed that the toluene soluble yields of products decreased from 64% to 19% as the hydropyrolysis temperature increased from 330 to 410 °C, while the abundance of nickel and vanadium compounds detected by GC-AED increased significantly. The molecular composition distribution of nickel and vanadyl porphyrins showed rhythmic changes with different temperatures in the hydropyrolysis of asphaltenes.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"51 10\",\"pages\":\"Pages 1383-1388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581321603330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581321603330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Morphology study of nickel and vanadium in asphaltenes via hydropyrolysis
The morphology of nickel and vanadium compounds in the asphaltenes were investigated via hydropyrolysis with the help of inductively coupled plasma mass spectrometer (ICP-MS), ultraviolet-visible (UV-Vis), high-temperature gas chromatography atomic emission detection (HT GC-AED), and positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (+ESI FT-ICR MS). The results showed that the toluene soluble yields of products decreased from 64% to 19% as the hydropyrolysis temperature increased from 330 to 410 °C, while the abundance of nickel and vanadium compounds detected by GC-AED increased significantly. The molecular composition distribution of nickel and vanadyl porphyrins showed rhythmic changes with different temperatures in the hydropyrolysis of asphaltenes.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.